NMP:Neural Map Prior for Autonomous Driving

本文介绍了一种利用全局BEV特征优化车端感知的方法,通过融合车端传感器数据和定位信息,提高鲁棒性和性能。然而,定位不准确和大规模数据融合问题是挑战。核心是设计了一个融合模块,包括位置编码、cross-attn和Conv-GRU,消融实验显示这些组件对性能有显著影响。
摘要由CSDN通过智能技术生成

参考代码:neural_map_prior

动机与出发点

在车端仅依靠自身传感器的感知结果经常是不稳定且错误比较多,则可在此基础上添加辅助信息来优化感知结果,这里使用的是全局BEV特征(城市级别)来做优化。也就是利用车端感知网络获取当前位置处BEV特征,同时依据定位信息从全局BEV特征中抠取对应区域BEV特征,再与当前感知网络BEV特征做融合,融合BEV特征通过定位信息将其更新到全局BEV特征上去,最后在融合BEV特征上做感知预测。也就是下图中展示的这个流程:
在这里插入图片描述

借用辅助信息的网络肯定会带来性能提升(天气、光照变化、黑夜等场景下的鲁棒性会增强),至少这一点是可以确定的,就是辅助信息的形式和如何获取需要再探讨,是使用地图、时序?但文章这样的方法却存在如下问题

  • 1)车端的定位结果是不准确的,会导致全局BEV特征上传和下载存在位置偏移,没有对应措施去显式处理
  • 2)对于量产项目会有很多车进行数据回传(只针对数采车那就另算),那么回传之后的多车数据如何进行融合,回传和下载会消耗网络流量

网络设计

核心的BEV特征融合和全局BEV特征更新的流程图见下图所示:
在这里插入图片描述

当前时刻得到由传感器获取的BEV特征 o o o和依据当前位置获取的全局BEV特征 p t − 1 l p_{t-1}^l pt1l,给予两者可学习的位置编码 P E c , P E p PE_c,PE_p PEc,PEp(引入位置信息,帮助近处和远处做优化),然后以 o o o为query去做cross-attn得到特征 o ′ o^{'} o,最后 p t − 1 l p_{t-1}^l pt1l o ′ o^{'} o去做Conv-GRU实现特征融合得到 p t ′ p_t^{'} pt。这个特征就用于去得到感知结果和更新全局BEV特征了。

看整个融合模块中各个分量的贡献度,消融实验得到:
在这里插入图片描述
可以看到光是融合这个操纵就能带来不错的性能提升,验证了辅助信息的重要性,其它CA、Local PE、GRU(该模块的功能CA也能做)也能带来一些收益。

实验结果

在其它一些方法基础上添加NMP模块带来的性能提升
在这里插入图片描述

  • 29
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值