《LaneAF:Robust Multi-Lane Detection with Affinity Fields》论文笔记

本文介绍了 LaneAF 算法,该算法通过结合语义分割和亲和场来实现更精确的多车道线检测。在语义分割的基础上, LaneAF 预测水平和垂直亲和场,用于区分车道线实例,后处理阶段通过中心点确定和聚类算法。损失函数包括差熵损失、IoU损失和亲和场损失。
摘要由CSDN通过智能技术生成

参考代码:LaneAF

1. 概述

导读:这篇文章提出了通过语义分割(2分类)检测车道线的算法,不过在其中添加了affinity fields用于区分不同的车道线(从语义分割演变实现“实例分割”)。文中对每条车道线预测两个affinity fields,分别是水平方向和垂直方向。其中水平方向的affinity fields用于归纳当前车道线行的中心点,垂直的affinity fileds用于推断当前车道线下一行预测集合的位置,也就是在图像的行维度上使用水平和垂直的affinity fields进行耦合,从而将不同的车道线区分开来。因而文章的算法后处理相对来讲会复杂一些,经过测试其平均耗时为15~20ms(CPU)。

文章方法新颖点在分割的基础上引入affinity fields用以在语义分割基础上实现“实例分割”的效果。其主要流程见下图所示:
在这里插入图片描述
左边的部分就是传统的语义分割的编解码单元,只是在输出的时候同时输出语义分割结果和两个方向上的affinity fields,之后通过后处理得到最后的结果。

2. Affinity Fileds和Loss

2.1 Affinity Fileds

预测标签的生成:
对于水平方向的affinity fileds是用于完成当前行所在车道线中心点的预测,那么当前行所在车道线上的点指向中心的向量就可以表示为:
H ⃗ g t ( x i l , y ) = ( x ˉ y l − x i l ∣ x ˉ y l − x i l ∣ , y − y ∣ ∣ y − y ) T = ( x ˉ y l − x i l ∣ x ˉ y l − x i l ∣ , 0 ) T \vec{H}_{gt}(x_i^l,y)=(\frac{\bar{x}_y^l-x_i^l}{|\bar{x}_y^l-x_i^l|},\frac{y-y}{||y-y})^T=(\frac{\bar{x}_y^l-x_i^l}{|\bar{x}_y^l-x_i^l|},0)^T H gt(xil,y)=(xˉylxilxˉylxil,yyyy)T=(xˉylxilxˉylxil,0)T
其中, x ˉ y l \bar{x}_y^l xˉyl代表当前车道线所在行的中心点, y y y代表当前所在的图片行, l l l代表当前所在的车道线, x i l x_i^l xi

自动增益控制(Automatic Gain Control,简称AGC)和多样式训练(Multi-Style Training)对于稳健小体积的有着重要意义。 首先,自动增益控制(AGC)是一种技术,可以自动调整信号的增益,以确保信号在传输过程中保持适当的强度。在语音识别和音频处理中,AGC可以有效地处理各种输入信号的音量差异,使其更适合于后续的处理过程。通过调整增益,AGC可以提高信号质量、减少噪音干扰,从而使得小体积系统更加稳健。 其次,多样式训练(Multi-Style Training)是一种训练方法,通过使用大量不同风格和语调的语音样本来增强语音识别系统的鲁棒性。传统的语音识别系统通常只在标准风格的语音上进行训练,导致在其他风格的语音输入时识别率下降。而采用多样式训练方法,系统可以学习到更广泛的语音样式,使得在各种语音输入情况下都能取得较好的识别效果。对于小体积的系统来说,多样式训练可以提高系统的鲁棒性,减少输入多样性带来的挑战。 综上所述,自动增益控制和多样式训练对于稳健小体积系统的重要性体现在它们能够提高信号质量、减少噪音干扰,并且增加系统对各种不同语音风格的适应能力。这些技术的应用可以使得小体积系统在不同环境和语音输入情况下都能取得较好的效果,提高用户体验和系统的实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值