《LaneAF:Robust Multi-Lane Detection with Affinity Fields》论文笔记

本文介绍了 LaneAF 算法,该算法通过结合语义分割和亲和场来实现更精确的多车道线检测。在语义分割的基础上, LaneAF 预测水平和垂直亲和场,用于区分车道线实例,后处理阶段通过中心点确定和聚类算法。损失函数包括差熵损失、IoU损失和亲和场损失。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考代码:LaneAF

1. 概述

导读:这篇文章提出了通过语义分割(2分类)检测车道线的算法,不过在其中添加了affinity fields用于区分不同的车道线(从语义分割演变实现“实例分割”)。文中对每条车道线预测两个affinity fields,分别是水平方向和垂直方向。其中水平方向的affinity fields用于归纳当前车道线行的中心点,垂直的affinity fileds用于推断当前车道线下一行预测集合的位置,也就是在图像的行维度上使用水平和垂直的affinity fields进行耦合,从而将不同的车道线区分开来。因而文章的算法后处理相对来讲会复杂一些,经过测试其平均耗时为15~20ms(CPU)。

文章方法新颖点在分割的基础上引入affinity fields用以在语义分割基础上实现“实例分割”的效果。其主要流程见下图所示:
在这里插入图片描述
左边的部分就是传统的语义分割的编解码单元,只是在输出的时候同时输出语义分割结果和两个方向上的affinity fields,之后通过后处理得到最后的结果。

2. Affinity Fileds和Loss

2.1 Affinity Fileds

预测标签的生成:
对于水平方向的affinity fileds是用于完成当前行所在车道线中心点的预测,那么当前行所在车道线上的点指向中心的向量就可以表示为:
H ⃗ g t ( x i l , y ) = ( x ˉ y l − x i l ∣ x ˉ y l − x i l ∣ , y − y ∣ ∣ y − y ) T = ( x ˉ y l − x i l ∣ x ˉ y l − x i l ∣ , 0 ) T \vec{H}_{gt}(x_i^l,y)=(\frac{\bar{x}_y^l-x_i^l}{|\bar{x}_y^l-x_i^l|},\frac{y-y}{||y-y})^T=(\frac{\bar{x}_y^l-x_i^l}{|\bar{x}_y^l-x_i^l|},0)^T H gt(xil,y)=(xˉylxilxˉylxil,yyyy)T=(xˉylxilxˉylxil,0)T
其中, x ˉ y l \bar{x}_y^l xˉyl代表当前车道线所在行的中心点, y y y代表当前所在的图片行, l l l代表当前所在的车道线, x i l x_i^l xi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值