【Linear Algebra 线性代数】7、求解Ax=0:主变量、特解

本节介绍了如何求解线性方程组Ax=0,重点讨论了主变量、特解的概念。通过消元过程,确定矩阵的秩和自由列,从而找到特解。此外,解释了简化行阶梯形式R(Reduce Row Echelon Form)的重要性,并提到了MathLab的rref函数在求解中的应用。

学习资源:
 - 麻省理工公开课:线性代数【讲师:Gilbert Strang】
 - 绘图工具 - Geogebra
个人笔记

回顾上一节的内容,上一节中我们给出了列空间和零空间的定义:
 矩阵A的所有列的线性组合构成了列空间C(A);
 Ax=0中的所有解x构成了零空间。
在本节中将讲述如何求解这一个零空间。

求解Ax=0

给出一个Example:
先进行消元

A=1232462682810>1032062282410>100200222244>100200220240=U A = [ 1 2 2 2 2 4 6 8 3 6 8 10 ] − > [ 1 2 2 2 0 0 2 4 3 6 8 10 ] − > [ 1 2 2 2 0 0 2 4 0 0 2 4 ] − > [ 1 2 2 2 0 0 2 4 0 0 0 0 ] = U

第一步:2行减去1行乘2;
我们发现2行2列元素为0,不管,直接消3行;
第二步:3行减去1行乘3;
这时,2行3行的2列元素都为0了,我们直接消去3行;
第三步:3行减去2行;
我们划线把0元素和非0元素分割开来,会发现这条线呈阶梯状,我们称消元后的矩阵为U。

Ux=0100200220240x1x2x3x4=0 U x = 0 [ 1 2 2 2 0 0 2 4 0 0 0 0 ] [ x 1 x 2 x 3 x 4 ] = 0

在U中有主元1行1列的1,2行3列的2,共有2个,我们称矩阵A的秩(Rank)为2。
  矩阵A的秩(Rank) = 消元后主元的个数
  主元所在的列称为主列(Pivot Columns),即1列和3列;
  其余列称为自由列(Free Columns),即2列和4列;
自由列意味着该列对应的变量x可取任意值,即 x2 x 2 x4 x 4 可取任意值;

消元后的方程组为:

{ x1+2x2+2x32x3++2x4
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值