线性代数学习笔记7

AX = b 的特例

例子:
{ x 1 + 2 x 2 + 2 x 3 + 2 x 4 = b 1 2 x 1 + 4 x 4 + 6 x 3 + 8 x 4 = b 2 3 x 6 + x 2 + 8 x 3 + 10 x 4 = b 3 \left\{ \begin{aligned} x_1+2x_2 + 2x_3+2x_4 & = & b1 \\ 2x_1+4x_4+6x_3+8x_4 & = & b2 \\ 3x_6+x_2+8x_3+10x_4 & = & b3 \end{aligned} \right. x1+2x2+2x3+2x42x1+4x4+6x3+8x43x6+x2+8x3+10x4===b1b2b3
对于上面的方程,发现 方程 1⃣️+方程2⃣️ = 方程 3⃣️,所以有如果 b 1 + b 2 ≠ b 2 b1 + b2 \neq b2 b1+b2̸=b2
的话,肯定不可能有解的。

用增广矩阵来表示:

[ 1 2 2 2 b 1 2 4 6 8 b 2 3 6 8 10 b 3 ] { \left[ \begin{array}{ccc} 1 & 2 & 2 & 2 & b1\\ 2 & 4 & 6& 8 & b2\\ 3 & 6 & 8 & 10 & b3 \end{array} \right ]} 1232462682810b1b2b3

上面矩阵经过消元法生成最简行阶梯矩阵后,为:
[ 1 2 0 − 2 b 1 0 0 1 2 b 2 − 2 b 1 0 0 0 0 b 3 − b 2 − b 1 ] { \left[ \begin{array}{ccc} 1 & 2 & 0 & -2 & b1\\ 0 & 0 & 1& 2 &b2-2b1\\ 0 & 0 & 0 & 0 &b3-b2-b1 \end{array} \right ]} 100200010220b1b22b1b3b2b1
我们发现最后一行,除了最后一列,最后一行是0零行,所以下面条件是一定要满足的 b 3 − b 2 − b 1 = 0 b3-b2-b1 = 0 b3b2b1=0

AX = b 如果可解时求解方法:

如果满足可解性,我们可以进行求解:

  • 1、求特解:让所有的自由变量全取。然后求解 AX = b 的主变量,如:
    { x 1 + 2 x 3 = 1 2 x 3 = 3 \left\{ \begin{aligned} x_1+2x_3 = & 1 \\ 2x_3 =& 3 \end{aligned} \right. {x1+2x3=2x3=13
    可以得到
    [ − 2 0 3 / 2 0 ] { \left[ \begin{array}{ccc} -2\\ 0\\ 3/2\\ 0 \end{array} \right ]} 203/20
    即是一个特解

  • 2、求通解 将特解+ 矩阵的零向量
    x = [ − 2 0 3 / 2 0 ] + c 1 [ − 2 1 0 0 ] + c 2 [ 2 0 − 2 0 ] x = { \left[ \begin{array}{ccc} -2\\ 0\\ 3/2\\ 0 \end{array} \right ]}+c1 { \left[ \begin{array}{ccc} -2\\ 1\\ 0\\ 0 \end{array} \right ]}+c2 { \left[ \begin{array}{ccc} 2\\ 0\\ -2\\ 0 \end{array} \right ]} x=203/20+c12100+c22020

  • 3注意,该方程的解的集合,无法构成一个空间,所以不能称之为空间,可以想像成一个由子空间平移上来的平面

总结AX = b 的可解性分析

1、如果b 在 A 的列向量空间里面,可以知道AX = b 是一定有解的,如果b 不在 A 的列向量空间里面,可以知道 AX= b 就没有解
2、如果AX = b ,不能满足A 化简得到的最简行阶梯矩阵中的全零行对应的 右侧 b的表达式为0,就无解,如果能够满足,就有解,如果没有零行,绝对有解

矩阵秩与 方程组解的关系

  • 首先矩阵的秩 表达的意思为矩阵主元的个数,可以通过消元法化简为最简行阶梯矩阵看出

  • 矩阵假设 为 M*N的大小,秩为r ,有 r<=m,r<=n

  • 所以有:
    1、行满秩时: r = m <n

    零空间: 无限个解
    特解:一定有解
    所以 AX = b(b!=0) 一定有无穷个解

    2、列满秩时: r = n < m

    零空间: 0向量,一个解
    特解: 可能没有解
    所以AX = b(b!=0) 可能有一个解,可能没有解

    3、满秩方阵时:

    零空间:0向量,一个解
    特解:一定有一个解
    所以AX = b(b!=0) 一定有一个解

    4、r<m,r<n时:

    零空间:无穷个解
    特解:有一个或者没有
    所以AX = b(b!=0) 要么无穷个解,要么没有解

  • 所以矩阵的秩一定程度上决定了方程组解的数目,秩r 包含了所有的信息

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值