这是Strang教授的第七讲,这节课是一个转折,它从定义转向算法,这节课主要内容是求解矩阵的零空间,通过一个例子讲解了通过消元法求解Ax=0,并在贯通例子的过程中介绍了几个新的概念:特解、主变量、自由变量、主列、自由列、阶梯矩阵U和简化的行阶梯形式,另外讲解了矩阵秩的概念。
特解
第6讲(列空间和零空间-线性代数课时6(MIT Linear Algebra , Gilbert Strang))介绍零空间时,虽然没给出求解矩阵A零空间的过程,但我们直接给出了例子中矩阵A的特解:
,
并指出是过原点的一条直线,上面表达式给出的向量(1,1,-1)就是特解,特解是从解直线上取的一点,由原点指向它的向量,直线上任意取一点除了原点都能当做特解。
有了特解的概念,那么A的零空间可以这样描述(书中原话):
The nullspace consists of all combinations of the special solutions.
通过消元法求解Ax=0
举例说明求解Ax=0的消元算法,首先,要说明消元过程不会改变方程组的解,所以不会改变,通过消元法求解Ax=0求解N(A)得到的结果是正确的,e.x:
上面消元得到的结果和前面讲的方阵消元得到的结果有点不同,它是一个阶梯形式的矩阵,叫做行阶梯矩阵(Echelon Matrices)。上面消元之后得到的主元1和2在第一列和第三列,包含主元的列叫做主列,消元之后不包含主元的列叫做自由列,例子中是列2和列4。对于Ax=b的解的4个分量,A主列对应的分量叫做主变量,A自由列对应的分量叫做自由变量。
消元之后的方程Ux=0,通过回代求解x,发现2个方程4个未知数,方程和未知数的个数不对应,这里怎么回代呢?这里回代的关键在于:自由变量可以随意取值,然后自由变量取的值带入方程回代求得主变量,从而求得特解,那么有多少个特解呢?答案是和自由变量的个数相同,回代:
1.取自由变量回代求得Ux=0的一个特解:
2.取自由变量回代求得Ux=0的另外一个特解:
求得特解之后,怎样给出x的整个解空间(也即),取所有特解的线性组合:
简化的行阶梯矩阵R
简化的行阶梯矩阵R很有用处,用它可以直接给出Ax=0的所有特解。R是在U的基础上再通过向上消元将主元上方的元素也消掉,使得主元上下均为0,接着上面的例子:
这就是R,要说明的是Ax=0,Ux=0,Rx=0解是相同的。我们假设A的主列都在自由列的前面,那么R将会有如下的一般形式:
,假设R有r个主元,那么R有r个主列,r个主行,n-r个自由列,m-r行0,通过R可以给出由Ax=0的特解作为列向量的矩阵N,N叫做零空间矩阵(Nullspace matrix)的表达式:
,,是一个的矩阵,N的列向量空间就是A的零空间 .
验证下上面的表达式是正确的,只需要验证成立:
。
我们也可以正向推导一下,看看表达式的来由,假设:
, 那么,
使得上面的表达式要成立的条件是,所以,因为自由变量可以任意取值,那么取,则,此时:
.上面的表达式就推导出来了。
矩阵的秩
矩阵的秩是一个十分重要的概念,它给出了矩阵A的真实大小。定义:
The rank of A is the number of pivots.This number is r.
矩阵的秩定义为矩阵A主元的个数,比如说矩阵的秩为1表情矩阵只有一个主元。
矩阵的秩r表明矩阵mxn的矩阵A只有r个线性无关的列向量和r个向量无关行向量。根据矩阵秩的定义,若矩阵A的秩为r,那么在解Ax=0的时候,有n-r个自由变量可以选取,特解的个数是n-r.
本节课的内容对应《INTRODUCTION TO LINEAR ALGEBRA》3.2章节的后半部分和3.3章节。
下节课:求解Ax=b:可解性和解的结构-线性代数课时8(MIT Linear Algebra , Gilbert Strang)