凸优化基础知识—凸集(Convex Sets)

本文详细介绍了凸优化问题,包括其定义、性质和等价问题的转换。同时,阐述了凸集的基本概念,如空集、范数球、超平面等,并讨论了凸包、锥和凸锥的定义。此外,还通过实例展示了如何通过增加约束、次方和消除等式约束来转换问题。
摘要由CSDN通过智能技术生成


集合与函数(Sets and functions)

凸优化问题(Convex Optimization problem)

A conex optimization problem is of the form:
min ⁡ x ∈ D f ( x ) \min_{x \in D} f(x) xDminf(x) subject to
g i ( x ) < 0 ,   i = 1 , . . . , m h j ( x ) = 0 ,   j = 1 , . . . , r \begin{array}{ll} g_i(x)<0, ~i=1,...,m \\ h_j(x)=0, ~j=1,...,r \end{array} gi(x)<0, i=1,...,mhj(x)=0, j=1,...,r where f f f and g i g_i gi are all convex, and h j h_j hj are affine. Any local minimizer of a convex optimization problem is a global minimizer.

凸集(Convex Sets)

定义(Definition )

Definition 2.1 凸集(Convex set): a set C ⊆ R n C \subseteq \mathbb{R}^n CRn is a convex set if for any x , y ∈ C x,y\in C x,yC, we have t x + ( 1 − t ) y ∈ C ,   ∀ 0 ≤ t ≤ 1. tx+(1-t)y \in C, ~\forall 0\le t \le 1. tx+(1t)yC, 0t1.
In other words, line segment joining any two elements lies entirly in set as following picture

Then, we assume that the black line respresents vector t x + ( 1 − t ) y tx+(1-t)y tx+(1t)y with t ∈ [ 0 , 1 ] t \in [0,1] t[0,1]; the vector always locates the set space composed of the linear combination of x x x and y y y, for any t t t.

Definition 2.2 Convex combination of x 1 , . . . , x k ∈ R n : x_1,...,x_k \in \mathbb{R}^n: x1,...,xkRn: any linear combination θ 1 x 1 + . . . + θ k x k , \theta_1x_1+...+\theta_kx_k, θ1x1+...+θkxk, with θ i ≥ 0 , \theta_i \ge 0, θi0, and ∑ i = 1 k θ i \sum_{i=1}^{k}\theta_i i=1kθi=1.
Definition 2.3 集合的凸包(Convex hull of set ) C C C: all convex combinations of elements in C C C. The convex hull is always convex.
Definition 2.4 锥(Cone): a set C ⊆ R n C\subseteq \mathbb{R}^n CRn is a cone if for any x ∈ C x \in C xC, we have t x ∈ C tx \in C txC for all t ≥ 0 t \geq 0 t0.
Definition 2.5 凸锥(Convex cone): a cone that is also convex, i.e., x 1 , x 2 ∈ C → t 1 x 1 + t 2 x 2 ∈ C   f o r   a l l   t 1 , t 2 ≥ 0 x_1,x_2 \in C\rightarrow t_1x_1+t_2x_2 \in C ~ for ~ all ~ t_1,t_2\geq 0 x1,x2Ct1x1+t2x2C for all t1,t20
Definition 2.6 圆锥组合 Conic combination of x 1 , . . . , x k ∈ R x_1,...,x_k \in \mathbb{R} x1,...,xkR: any linear combination θ 1 x 1 + . . . + θ k x k ,   w i t h   θ ≥ 0 \theta_1x_1+...+\theta_kx_k, ~ with ~ \theta \geq 0 θ1x1+...+θkxk, with θ0
Definition 2.7 Conic hull of set C C C; all conic combinations of elements in C C C.

凸集的例子(Examples of convex sets)
  • Empty set, point, and line are convex set.
  • 范数球(Norm ball): { x : ∥ x ∥ ≤ r } \{x:\|x\| \le r\} {x:xr}, for given norm ∥ ⋅ ∥ \|\cdot\| , radius r r r.
  • 超平面(Hyperplane): { x : a T x = b } \{x:a^Tx=b\} {x:aTx=b}, for given a , b a,b a,b.
  • 半空间(Halfspace): { x : a T x ≤ b } \{ x: a^Tx \leq b\} {x:aTxb}.
  • 仿射空间(Affine space): { x : A x = b } \{x:Ax=b\} {x:Ax=b}
  • 多面体(Polyhedron): { x : A x ≤ b } \{x:Ax\leq b \} {x:Axb},下面为多面体

等价问题

注意:两个问题的最优值相同,则这两个问题等价

A. 增加约束:

min ⁡   f 0 ( x ) s . t .     l i ≤ x i ≤ u i , i = 1 , . . . , n . \begin{array}{ll} & \min ~ f_0(x) \\ & s.t. ~~~ l_i \le x_i \le u_i, i=1,...,n. \end{array} min f0(x)s.t.   lixiui,i=1,...,n.

The above inequality constraint can be swith as the following inequations:
s . t . l i − x i ≤ 0 , i = 1 , . . . , n . x i − u i ≤ , i = 1 , . . . , n . \begin{array}{ll} & s.t. & l_i - x_i \le 0, &i=1,...,n. \\ & & x_i - u_i \le, &i=1,...,n. \end{array} s.t.lixi0,xiui,i=1,...,n.i=1,...,n.

B. 增加次方:

min ⁡ x ∥ A x − b ∥ 2 \min_x \| \mathbf{A} x - b \|_2 xminAxb2 由于 x x x在函数内单调递增,故可等价于: min ⁡ x ∥ A x − b ∥ 2 2 \min_x \| \mathbf{A} x - b \|_2^2 xminAxb22

C. 消除约束等式约束:

Theoretically, the reduction of the constraints of equations makes higher efficiency, so we need to eliminate the equation constraints as possible as we can.

An typical example:
Assume that z ∈ R k , ζ : R k → R n z\in \mathbb{R}^k, \zeta:\mathbb{R}^k \rightarrow\mathbb{R}^n zRk,ζ:RkRn,
min ⁡   f 0 ( x ) s . t .    f i ( x ) ≤ 0 , i = 1 , . . . , n     x = ζ ( z ) \begin{array}{lll} & \min ~ f_0(x) \\ & s.t. ~~ f_i(x) \le 0, i=1,...,n \\ & \quad ~~~ x = \zeta(z) \end{array} min f0(x)s.t.  fi(x)0,i=1,...,n   x=ζ(z) Then, the above problem can be reformulate as the function of variable z z z,i.e.,
min ⁡   f 0 ( ζ ( z ) ) s . t .    f i ( ζ ( z ) ) ≤ 0 , i = 1 , . . . , n \begin{array}{ll} & \min ~f_0(\zeta(z)) \\ & s.t. ~~ f_i(\zeta(z)) \le 0, i=1,...,n \end{array} min f0(ζ(z))s.t.  fi(ζ(z))0,i=1,...,n Finally, x ∗ x^* x can be obtained from the x ∗ = ζ ( z ∗ ) x^* = \zeta(z^*) x=ζ(z).


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值