SENet实验策略

  1. reduction超参数,设置r=16或者8比较合适
  2. squeeze操作用avg pool比max pool效果好
  3. excitation操作全连接层的激活函数用sigmoid最好
  4. senet加在res50的2、3、4层,加在最后一层收效甚微
  5. SE-PRE block效果比standard SE效果好一点点
  6. squeeze操作的作用:获得全局上下文信息,excitation操作的作用:使类间和类内的物体提取到的特征通道差异化

自己论文实验启发:

验证excitation作用的时候,它选取了四个差别较大的类,然后在测试集中每个类选50个样本,对于resnet50的每个层,将经过senet以后的通道激活值求出来,然后50个样本的激活值取平均作为该类别的激活值,画出这四个类别的通道激活值曲线作对比。曲线差别越大,证明能够将不同类别区分开来。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值