【ROS2】ROS2 C++版本 与 Python版本比较

在这里插入图片描述

ROS 系列学习教程(总目录)
ROS2 系列学习教程(总目录)

目前ROS开发主要使用 C++ 和 Python 语言,这里会分别实现并讲解。

相较于ROS1,ROS2的 C++ 和 Python 版本相差比较大。

一、功能包的构建方式

C++:

  • 构建系统:通常使用 CMake 或 ament_cmake 作为构建系统。
  • 构建文件:需要编写 CMakeLists.txt 文件来描述如何构建C++代码。
  • 构建命令:使用 colcon build 命令进行构建,可以指定构建类型(如Release或Debug)和选择构建哪些包。

Python:

  • 构建系统:使用 ament_python 作为构建系统。
  • 构建文件:需要编写 setup.py 文件来描述如何构建Python包。
  • 构建命令:同样使用 colcon build 命令进行构建。

二、功能包组织结构

C++包:

  • 描述构建与安装方式的文件(CMakeLists.txt)。
  • 元信息文件(package.xml)。
  • 公共头文件目录(include)。
  • 源代码目录(src)。
  • 测试目录(test,可选)

在这里插入图片描述

Python包:

  • 描述构建与安装方式的文件(setup.py)。
  • 元信息文件(package.xml)
  • 源代码目录。
  • 包的配置文件(setup.cfg,可选)
  • 资源文件目录(resource,可选,用于存放特定资源)
  • 测试目录(test,可选)

在这里插入图片描述

三、代码编写

C++:

  • 节点创建:通常通过继承rclcpp::Node类的方式来创建节点对象,这有助于在一个进程内组织多个节点,提高节点间的通信效率。
  • 代码组织:C++代码通常按照类的方式进行组织,注重代码的结构和封装。
  • 编译要求:C++代码需要编译成可执行文件才能运行。

Python:

  • 节点创建:虽然也可以通过实例化rclcpp.Node类的方式来创建节点对象,但更推荐的做法是定义一个Python类并继承rclcpp.Node类。
  • 代码组织:Python代码注重简洁和易读性,通常使用函数和类来组织代码。
  • 解释执行:Python代码是解释执行的,不需要编译成可执行文件。

四、性能与效率

C++提供了高性能和低层级控制,适合编写复杂的算法和底层系统。而Python则以其简洁和易读性著称,但在性能上可能不如C++。Python的开发效率通常高于C++,因为Python代码更容易编写和调试。然而,这也取决于开发者的个人偏好和熟练程度。

C++:

  • 高效性能:C++是一种编译型语言,具有高效性能和低内存占用的特点。在ROS2中使用C++可以充分发挥硬件的性能优势,实现实时控制和高速通信。
  • 底层控制:C++提供了对底层硬件和操作系统的直接访问,适合编写需要高性能和低延迟的算法和系统。

Python:

  • 简洁性:Python语言简洁易读,易于学习和使用。
  • 动态性:Python是一种解释型语言,无需编译,适合快速开发和原型设计。
  • 性能提升:Python 3相对于Python 2在性能上有一定的提升,但在实时性和低延迟方面仍不如C++。

五、兼容性

  • C++:因为ROS2的许多核心组件和库都是用C++编写的,C++在ROS2中具有很好的兼容性。这使得C++在ROS2中的使用更加广泛和深入。

  • Python:ROS2 主要采用 Python3 作为其默认的Python版本。由于 Python3 与 Python2 在某些方面存在一些不兼容的变化,因此在迁移到ROS2时,需要重新编写或调整现有的Python编写的ROS1代码。然而,ROS2提供了针对Python的完整的API,包括用于创建ROS节点、发布和订阅消息、调用和提供服务等功能,这大大降低了迁移的难度。

六、应用场景

C++:

  • 实时控制:C++适合编写需要实时控制和高速通信的机器人系统,如自动驾驶汽车、工业机器人等。
  • 底层系统:C++适合编写底层系统,如操作系统、驱动程序等。

Python:

  • 快速原型设计:Python适合用于快速原型设计和算法验证,因为其易于上手和学习的特点可以缩短开发周期。
  • 数据处理与分析:Python拥有丰富的数据处理和分析库,适合用于机器人系统中的数据处理和分析任务。


欢迎大家加QQ群,一起讨论学习:894013891

ROS 2 (Robot Operating System) 中,使用 C++ 编写相机节点通常涉及以下几个步骤: 1. **安装依赖**: 首先,你需要确保已经安装了 ROS 2 的相关包,包括 `ros2cpp` 和任何用于摄像头驱动(如 `camera_calibration` 或 `image_transport`)。可以使用 `ros2 package manager`(如 `ros2 apt` 或者 `ament build`)来安装。 2. **创建节点**: 创建一个新的 C++ 工程,并添加必要的头文件,例如 `<rclcpp/rclcpp.hpp>`、`<sensor_msgs/imagemsg.hpp>` 等,它们分别代表了 ROS 2 的通信库和图像消息。 3. **定义节点**: 定义一个继承自 `rclcpp::Node` 类的子类,比如 `CameraNode`,并在构造函数中初始化 `Node` 对象。 ```cpp #include <rclcpp/rclcpp.hpp> #include <sensor_msgs/imagemsg.h> class CameraNode : public rclcpp::Node { public: explicit CameraNode(rclcpp::NodeOptions options) : Node("camera_node", options) {} // 在这里添加相机数据获取和发布图像的方法 }; ``` 4. **订阅和发布**: 创建订阅器订阅相机的数据流,当接收到新的图像数据时,处理并将其转换成 `sensor_msgs::Image` 消息。同时,创建一个发布器将图像发送到其他节点。 ```cpp void image_callback(const sensor_msgs::msg::Image::SharedPtr msg) { auto img_msg = std::make_shared<sensor_msgs::msg::Image>(); // 将接收到的图像数据处理并复制到img_msg中 publisher_->publish(img_msg); } int main(int argc, char * argv[]) { rclcpp::init(argc, argv); CameraNode node; auto sub = node.create_subscription<sensor_msgs::msg::Image>("camera_topic", 10, image_callback); rclcpp::spin(node); // 这里启动事件循环,监听回调和网络活动 return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万俟淋曦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值