第一章 机器学习概述 1.3机器学习算法的过程

在这里插入图片描述

1、提取特征

答:(1)特征提取:
通过训练样本获得的,对机器学习任务有帮助的多维度数据。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
(2)特征选择:

浙江大学人工智能课程课件,内容有: Introduction Problem-solving by search( 4 weeks) Uninformed Search and Informed (Heuristic) Search (1 week) Adversarial Search: Minimax Search, Evaluation Functions, Alpha-Beta Search, Stochastic Search Adversarial Search: Multi-armed bandits, Upper Confidence Bound (UCB),Upper Confidence Bounds on Trees, Monte-Carlo Tree Search(MCTS) Statistical learning and modeling (5 weeks) Probability Theory, Model selection, The curse of Dimensionality, Decision Theory, Information Theory Probability distribution: The Gaussian Distribution, Conditional Gaussian distributions, Marginal Gaussian distributions, Bayes’ theorem for Gaussian variables, Maximum likelihood for the Gaussian, Mixtures of Gaussians, Nonparametric Methods Linear model for regression: Linear basis function models; The Bias-Variance Decomposition Linear model for classification : Basic Concepts; Discriminant Functions (nonprobabilistic methods); Probabilistic Generative Models; Probabilistic Discriminative Models K-means Clustering and GMM & Expectation–Maximization (EM) algorithm, BoostingThe Course Syllabus Deep Learning (4 weeks) Stochastic Gradient Descent, Backpropagation Feedforward Neural Network Convolutional Neural Networks Recurrent Neural Network (LSTM, GRU) Generative adversarial network (GAN) Deep learning in NLP (word2vec), CV (localization) and VQA(cross-media) Reinforcement learning (1 weeks) Reinforcement learning: introduction
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值