LLM论文:ALCE (Enabling Large Language Models to Generate Text with Citations)

本文探讨了在RAG领域中,如何通过ALCE评估模型解决大语言模型在信息搜索和生成带引用文本时的事实准确性问题。模型强调了对长文本生成、正确性和引用质量的自动评估,并区分了vanilla、inlinesearch和closebook三种检索生成方式。
摘要由CSDN通过智能技术生成

这是一篇RAG领域的文章,原文在这:https://aclanthology.org/2023.emnlp-main.398.pdf

时间[Submitted on 24 May 2023 (v1), last revised 31 Oct 2023 (this version, v2)]
背景LLM在信息搜索、生成带引用的文本时存在幻觉问题,即事实准确性有待提升,而且用户难以验证准确性。
现有工作的不足人工评估或商用搜索引擎,难以复现和比较不同模型
解决提出Automatic LLM Citation Evalutation 自动化评估模型检索生成能力
创新点

1. 评估长文本生成

2. 自动评估引用质量

3. 允许为一个陈述引用多篇文章

具体工作内容:

数据集

有三个数据集,分别是

ALCE评估模型:

三方面评估

  • 流畅度——MAUVE (Pillutla et al., 2021)
  • 正确性——根据数据集特点,定制了三种评估方式,主要使用了召回率,正确率
  • 引用质量——根据数据集特点,定制了三种评估方式,主要使用了召回率,正确率

检索生成方式

  1. vanilla:提供模型可能包含答案的文章,写提示词告诉他要正确地引用
  2. summ/snippet: 不提供完整的文章而是概要版或某一段,为了减少信息损失,还结合了INTERACT,模型可以选择是否去看一个浓缩版对应的完整的文章
  3. inlinesearch: 不提供检索结果,允许模型调用搜索
  4. closebook:不提供外部文章,让模型闭卷给出答案。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__心似大海__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值