KDTree索引(K近邻搜索,半径R内近邻搜索)——PCL

K近邻搜索(K Nearest Neighbors)

  • K近邻搜索是一种基于点数量的搜索方法,它会找到指定点附近最接近的K个邻居点。
  • K近邻搜索中的K值是一个参数,您需要指定要搜索的邻居数量。
  • 该方法适用于需要查找固定数量邻居点的情况,例如K最近邻分类器和最近邻插值等。
	/// <summary>
	/// kdtree的k近邻索引
	/// </summary>
	/// <param name="cloud">需要所有的点云</param>
	/// <param name="searchPoint">需要索引的点</param>
	/// <param name="k">索引的个数</param>
	/// <returns>返回索引出点的编号数组</returns>
std::vector<int> PclTool::kdtreeKSearch(const pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, const pcl::PointXYZ searchPoint, const unsigned int k)
{
    // 创建KdTreeFLANN对象,并把创建的点云设置为输入,searchPoint变量作为查询点
    pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; 
    // 设置搜索空间
    kdtree.setInputCloud(cloud);
    std::vector<int> pointIdxNKNSearch(k);          // 存储查询点近邻索引
    std::vector<float> pointNKNSquaredDistance(k);  // 存储近邻点对应距离平方

	  // 打印相关信息
    std::cout << "K nearest neighbor search at (" << searchPoint.x << " " << searchPoint.y << " " << searchPoint.z << ") with K=" << k << std::endl;

	if (kdtree.nearestKSearch(searchPoint, k, pointIdxNKNSearch, pointNKNSquaredDistance) > 0)  // 执行K近邻搜索
    {
        return pointIdxNKNSearch;
		 打印所有近邻坐标
		//for (size_t i = 0; i < pointIdxNKNSearch.size(); ++i)
		//{
		//	std::cout << "    " << cloud->points[pointIdxNKNSearch[i]].x << " " << cloud->points[pointIdxNKNSearch[i]].y << " " << cloud->points[pointIdxNKNSearch[i]].z << " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;
		//}
    }
	else
	{
        return std::vector<int>();
	}
}

截取出兔子耳朵的部分
在这里插入图片描述

半径R内近邻搜索(Radius Neighbors):

  • 半径R内近邻搜索是一种基于距离阈值的搜索方法,它会找到距离指定点在半径R范围内的所有邻居点。
  • R是搜索半径,指定了要搜索的邻居点的最大距离。
  • 该方法适用于需要查找在一定距离范围内的邻居点的情况,例如密度估计和聚类等。
    /// <summary>
    /// kdtree的半径近邻索引
    /// </summary>
    /// <param name="cloud">需要所有的点云</param>
    /// <param name="searchPoint">需要索引的点</param>
    /// <param name="radius">索引半径</param>
    /// <returns>返回索引出点的编号数组</returns>
    static std::vector<int> kdtreeRadiusSearch(const pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, const pcl::PointXYZ searchPoint, const float radius)
    {
    // 创建KdTreeFLANN对象,并把创建的点云设置为输入,searchPoint变量作为查询点
    pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
    kdtree.setInputCloud(cloud);

    std::vector<int> pointIdxRadiusSearch;          // 存储近邻索引
    std::vector<float> pointRadiusSquaredDistance;  // 存储近邻对应距离的平方

    if (kdtree.radiusSearch(searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0)  // 执行半径R内近邻搜索方法
    {
        return pointIdxRadiusSearch;
    }
    else
    {
        return std::vector<int>();
    }
}

截取出兔子上半身
在这里插入图片描述

### PCL KDTree简介 在PCL库中,KDTree用于高效地执行近邻搜索操作。具体来说,`pcl::KdTree<PointT>` 和 `pcl::KdTreeFLANN<PointT>` 是两个主要的模板类实现[^1]。前者为基础类,后者为其子类并提供了更高效的实现方式。 #### 构建与使用KDTree 构建KD树的过程涉及将点云数据按不同维度递归划分成较小的子集,形成一个多级树状结构。这种结构允许快速定位最接查询的数据或位于指定范围内的所有[^3]。 #### 主要功能函数 - **Radius Search**: 查找给定半径内所有的邻居。 - **Nearest K Search**: 找到离目标的前K个。 这些方法极大地方便了对大规模三维点云数据的操作和分析[^2]。 ```cpp #include <pcl/kdtree/kdtree_flann.h> #include <pcl/point_cloud.h> #include <pcl/point_types.h> // 创建一个点云对象 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>); cloud->width = 5; cloud->height = 1; cloud->points.resize(cloud->width * cloud->height); for (size_t i = 0; i < cloud->points.size (); ++i){ cloud->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f); cloud->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f); cloud->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f); } // 初始化KDTree实例 pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; // 将点云加载至KDTree kdtree.setInputCloud (cloud); // 定义测试及其参数设置 std::vector<int> pointIdxNKNSearch(1); // 存储找到的临索引 std::vector<float> pointNKNSquaredDistance(1); // 对应的距离平方值 // 使用nearestKSearch查找最的一个邻居 if (kdtree.nearestKSearch (cloud->points[0], 1, pointIdxNKNSearch, pointNKNSquaredDistance) > 0) { std::cout << "最的邻居是:" << pointIdxNKNSearch[0] << ", 距离为:" << sqrt(pointNKNSquaredDistance[0]) << std::endl; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值