Eigen矩阵的平移,旋转,缩放

#include <Eigen/Core>
#include <Eigen/Dense>

平移

x轴

	// 原始点或对象的坐标
	Eigen::Vector3d original_point(1.0, 2.0, 3.0);
	std::cout << "original_point: " << std::endl << original_point << std::endl;
	
	// x 轴上的平移量
	double tx = 2.0;
	// 构造平移矩阵
	Eigen::Matrix4d translation_matrix = Eigen::Matrix4d::Identity();
	translation_matrix(0, 3) = tx;
	std::cout << "translation_matrix: " << std::endl << translation_matrix << std::endl;
	// 1 0 0 2
	// 0 1 0 0
	// 0 0 1 0
	// 0 0 0 1

	// 应用平移变换
	Eigen::Vector4d homogenous_point(original_point.x(), original_point.y(), original_point.z(), 1.0);
	Eigen::Vector4d transformed_point = translation_matrix * homogenous_point;

	std::cout << "Transformed point after translation along x-axis: " << transformed_point.transpose().block<1, 3>(0, 0) << std::endl;

在这里插入图片描述

y轴

	// 原始点或对象的坐标
	Eigen::Vector3d original_point(1.0, 2.0, 3.0);

	// y 轴上的平移量
	double ty = -1.0;

	// 构造平移矩阵
	Eigen::Matrix4d translation_matrix = Eigen::Matrix4d::Identity();
	translation_matrix(1, 3) = ty;
	std::cout << "translation_matrix: " << std::endl << translation_matrix << std::endl;
	// 1  0  0   0
	// 0  1  0  -1
	// 0  0  1   0
	// 0  0  0   1

	// 应用平移变换
	Eigen::Vector4d homogenous_point(original_point.x(), original_point.y(), original_point.z(), 1.0);
	Eigen::Vector4d transformed_point = translation_matrix * homogenous_point;
	// 输出结果
	std::cout << "Original point: " << original_point.transpose() << std::endl;
	std::cout << "Transformed point after translation along y-axis: " << transformed_point.transpose().block<1, 3>(0, 0) << std::endl;

在这里插入图片描述

z轴

	// 原始点或对象的坐标
	Eigen::Vector3d original_point(1.0, 2.0, 3.0);

	// z 轴上的平移量
	double tz = 0.5;

	// 构造平移矩阵
	Eigen::Matrix4d translation_matrix = Eigen::Matrix4d::Identity();
	translation_matrix(2, 3) = tz;
	std::cout << "translation_matrix: " << std::endl << translation_matrix << std::endl;
	// 1   0   0   0
	// 0   1   0   0
	// 0   0   1  0.5
	// 0   0   0   1

	// 应用平移变换
	Eigen::Vector4d homogenous_point(original_point.x(), original_point.y(), original_point.z(), 1.0);
	Eigen::Vector4d transformed_point = translation_matrix * homogenous_point;
	// 输出结果
	std::cout << "Original point: " << original_point.transpose() << std::endl;
	std::cout << "Transformed point after translation along y-axis: " << transformed_point.transpose().block<1, 3>(0, 0) << std::endl;

在这里插入图片描述

旋转

x轴

	#define M_PI 3.14159265358979323846
	// 原始点或对象的坐标
	Eigen::Vector3d original_point(0.0, 1.0, 0.0);

	// 绕 x 轴顺时针旋转角度(弧度)
	double angle = M_PI / 4.0; // 45 度
	 绕 x 轴逆时针旋转角度(弧度)
	//double angle = -M_PI / 4.0; // -45 度

	// 构造旋转矩阵
	Eigen::Matrix3d rotation_matrix;
	rotation_matrix = Eigen::AngleAxisd(angle, Eigen::Vector3d::UnitX());

	// 应用旋转变换
	Eigen::Vector3d rotated_point = rotation_matrix * original_point;

	// 输出结果
	std::cout << "Original point: " << original_point.transpose() << std::endl;
	std::cout << "Rotated point after clockwise rotation around x-axis: " << rotated_point.transpose() << std::endl;

y轴

	#define M_PI 3.14159265358979323846
	// 原始点或对象的坐标
	Eigen::Vector3d original_point(0.0, 1.0, 0.0);

	 绕 y 轴顺时针旋转角度(弧度)
	//double angle = M_PI / 3.0; // 60 度
	// 绕 y 轴逆时针旋转角度(弧度)
	double angle = -M_PI / 3.0; // -60 度

	// 构造旋转矩阵
	Eigen::Matrix3d rotation_matrix;
	rotation_matrix = Eigen::AngleAxisd(angle, Eigen::Vector3d::UnitY());

	// 应用旋转变换
	Eigen::Vector3d rotated_point = rotation_matrix * original_point;

	// 输出结果
	std::cout << "Original point: " << original_point.transpose() << std::endl;
	std::cout << "Rotated point after clockwise rotation around y-axis: " << rotated_point.transpose() << std::endl;

z轴

	#define M_PI 3.14159265358979323846
	
	// 原始点或对象的坐标
	Eigen::Vector3d original_point(0.0, 1.0, 0.0);

	 绕 z 轴顺时针旋转角度(弧度)
	//double angle = M_PI / 6.0; // 30 度

	// 绕 z 轴逆时针旋转角度(弧度)
	double angle = -M_PI / 6.0; // -30 度

	// 构造旋转矩阵
	Eigen::Matrix3d rotation_matrix;
	rotation_matrix = Eigen::AngleAxisd(angle, Eigen::Vector3d::UnitZ());

	// 应用旋转变换
	Eigen::Vector3d rotated_point = rotation_matrix * original_point;

	// 输出结果
	std::cout << "Original point: " << original_point.transpose() << std::endl;
	std::cout << "Rotated point after clockwise rotation around z-axis: " << rotated_point.transpose() << std::endl;

缩放

<think>好的,我需要帮助用户了解如何在Eigen库中实现矩阵插值。首先,我应该明确什么是矩阵插值。矩阵插值通常指在两个或多个矩阵之间进行平滑过渡,生成中间状态的矩阵。这在图形学、机器人学和动画中很常见,比如在姿态插值中。 接下来,我需要回忆Eigen库的相关功能。Eigen主要用于线性代数运算,支持各种矩阵操作,但可能没有直接的插值函数。不过,用户可以通过结合Eigen的基本运算来实现插值。常见的插值方法包括线性插值和球面线性插值(slerp),后者适用于旋转矩阵或四元数。 首先,线性插值(Lerp)对于平移矩阵或普通矩阵可能适用。公式是:$M(t) = (1 - t) \cdot M_0 + t \cdot M_1$,其中$t$在0到1之间。在Eigen中,这可以通过矩阵的标量乘法和加法实现。需要注意矩阵维度一致。 对于旋转矩阵,直接线性插值可能导致问题,比如失去正交性。此时应该用slerp。Eigen的几何模块提供了四元数的slerp,所以步骤可能是将旋转矩阵转换为四元数,进行slerp,再转回矩阵。例如,使用Eigen::Quaterniond的slerp函数。 另外,用户可能需要处理更复杂的插值情况,比如多个关键帧之间的插值,这时可能需要样条插值。Eigen可以结合样条库或自行实现样条函数,计算插值点后构造矩阵。 还需要考虑内存对齐的问题,特别是使用STL容器存储Eigen对象时,需要使用Eigen::aligned_allocator,避免段错误。例如,std::vector<Eigen::Matrix4d, Eigen::aligned_allocator<Eigen::Matrix4d>>。 总结实现步骤:确定插值类型,选择相应方法,利用Eigen矩阵运算或几何模块,处理对齐问题。如果有必要,引用相关文档或资料,比如Eigen官方教程或几何模块的说明。 最后,生成相关问题,帮助用户深入理解,比如不同插值方法的区别、处理动态矩阵或性能优化等。</think>### 使用Eigen实现矩阵插值的方法 矩阵插值通常用于在两组矩阵之间生成平滑过渡的中间状态,例如在动画、机器人运动规划或姿态估计中。Eigen库本身没有直接提供矩阵插值函数,但可以通过结合基础线性代数运算和几何模块实现。以下是几种常见场景的实现方法: --- #### **1. 线性插值(Lerp)** 适用于普通矩阵(如平移矩阵缩放矩阵),插值公式为: $$ M(t) = (1 - t) \cdot M_0 + t \cdot M_1 $$ 其中 $t \in [0,1]$,在Eigen中实现如下: ```cpp #include <Eigen/Dense> using namespace Eigen; Matrix4d lerp(const Matrix4d& M0, const Matrix4d& M1, double t) { return (1 - t) * M0 + t * M1; } ``` **注意**:直接对旋转矩阵使用线性插值可能导致非正交矩阵,需特殊处理[^1]。 --- #### **2. 旋转矩阵的球面线性插值(Slerp)** 旋转矩阵属于特殊正交群($SO(3)$),需使用四元数进行球面插值。Eigen的几何模块提供四元数的`slerp`函数: ```cpp #include <Eigen/Geometry> using namespace Eigen; Matrix3d slerp_rotation(const Matrix3d& R0, const Matrix3d& R1, double t) { Quaterniond q0(R0); // 将旋转矩阵转为四元数 Quaterniond q1(R1); Quaterniond q_interp = q0.slerp(t, q1); return q_interp.toRotationMatrix(); // 转回旋转矩阵 } ``` 此方法保证插值结果始终是合法的旋转矩阵[^2]。 --- #### **3. 动态矩阵插值(结合样条曲线)** 对于多关键帧插值,可使用样条函数(如三次样条)生成平滑路径。例如,基于时间序列插值: ```cpp // 假设有一组矩阵和时间戳:std::vector<Matrix4d> matrices, std::vector<double> times Matrix4d interpolate_spline(const std::vector<Matrix4d>& matrices, const std::vector<double>& times, double query_time) { // 1. 找到query_time所在的区间索引i // 2. 使用三次样条计算插值系数 // 3. 对矩阵的每个元素分别插值(需注意旋转部分的特殊处理) // 返回插值后的矩阵 } ``` **注意**:存储矩阵容器时需使用内存对齐分配器: ```cpp std::vector<Matrix4d, Eigen::aligned_allocator<Matrix4d>> matrices; // 避免段错误[^3] ``` --- #### **4. 分块矩阵插值** 若矩阵包含平移旋转缩放等不同部分,可分别插值: ```cpp Matrix4d interpolate_transform(const Matrix4d& T0, const Matrix4d& T1, double t) { // 提取平移部分 Vector3d trans0 = T0.block<3,1>(0,3); Vector3d trans1 = T1.block<3,1>(0,3); Vector3d trans_interp = (1 - t) * trans0 + t * trans1; // 提取旋转部分并slerp Matrix3d rot0 = T0.block<3,3>(0,0); Matrix3d rot1 = T1.block<3,3>(0,0); Matrix3d rot_interp = slerp_rotation(rot0, rot1, t); // 构建插值后的变换矩阵 Matrix4d T_interp = Matrix4d::Identity(); T_interp.block<3,3>(0,0) = rot_interp; T_interp.block<3,1>(0,3) = trans_interp; return T_interp; } ``` --- ### 关键问题与优化 - **插值方法选择**:平移分量可用线性插值,旋转需用四元数slerp,缩放分量可单独插值[^4]。 - **性能优化**:避免频繁矩阵内存分配,可预计算四元数或使用仿射变换类`Eigen::Affine3d`。 - **边界条件**:多关键帧插值时需指定边界条件(如速度连续),可通过样条导数实现。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值