实例分割算法PANet:Path Aggregation Network for Instance Segmentation

论文链接:https://arxiv.org/abs/1803.01534

这篇文章提出的Path Aggregation Network (PANet)整体上可以看做是在Mask RCNN上做多处改进,充分利用了特征融合,比如引入bottom-up path augmentation结构,充分利用网络浅特征进行分割;引入adaptive feature pooling使得提取到的ROI特征更加丰富;引入fully-connected fusion,通过融合一个前背景二分类支路的输出得到更加精确的分割结果。整体而言对于目标检测和分割系列算法有不少启发。

一、主要创新点

1、Bottom-up path augmentation

在FPN的基础上引入Bottom-up path augmentation,具体结构如下图所示。主要的目的是减少从底层特征到高层特征的路径(从N2到N5总共不到10层卷积,而红色虚线箭头所示的提取特征操作可能经过几十层卷积操作,丢失较多位置及细节信息),防止底层具体位置信息的丢失,使特征金字塔提取的特征更精确。其中N2等同于P2,不做任何处理。

 

2、Adaptive Feature Pooling

在FPN网络中,P2~P5层使用不同尺寸及长宽比的RoI,对每个ROI proposal做ROI Pooling或者ROI Align时,只在该ROI所在的feature map上提取特征,即尺寸最小的ROI只在P2上做ROI Pooling或者ROI Align,尺寸最大的只在P5上。本文中不同在:对每个proposal做ROI Pooling或者ROI Align时,取所有层特征,即分别映射到N2~N5层提取特征后融合(文中实验表明取max操作效果最好)作为ROI最终的特征。这样做的好处是让ROI能利用不同层级的特征,得到的特征更精确。

 

3、Fully-connected Fusion

在mask RCNN网络的实例分割mask prediction branch,对每个ROI做ROI Align后的特征接一个FCN网络对每个类别预测一个二分类的mask输出,这个FCN网络一般是叠加多个卷积(例如4个),再接一个deconv及1×1卷积得到输出结果。由于全连接层与FCN具有不同特性,本文在原有基础上添加一个全连接分支,与FCN输出融合,用于提升mask预测精度。全连层的输出是判断每个像素是前景或背景类。

实验中表明fc分支加在conv3后面精度最高。

二、实验结果

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值