tensorflow 1.15.0 版本的cuda要求不能太高 ,对应的cuda 和cudnn版本如下
cudatoolkit 10.0
cudnn cudnn-7.6.5.32
但是我们cuda已经安装了11.3,如果直接用pip 安装tensorflow,gpu 不会生效
,报错
因此我们需要使用conda安装,这样在虚拟环境中,他会自动下载cudatoolkit和cudnn,可以说很方便了。
创建conda虚拟环境
conda create --name tensorflow_gpu_1_15 python=3.7
$ conda create --name tensorflow_gpu_1_15 python=3.7
Collecting package metadata (current_repodata.json): done
Solving environment: done
==> WARNING: A newer version of conda exists. <==
current version: 4.10.1
latest version: 23.11.0
Please update conda by running
$ conda update -n base -c defaults conda
## Package Plan ##
environment location: /home/maohuifei/anaconda3/envs/tensorflow_gpu_1_15
added / updated specs:
- python=3.7
The following packages will be downloaded:
package | build
---------------------------|-----------------
libffi-3.4.2 | h7f98852_5 57 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libnsl-2.0.1 | hd590300_0 33 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
openssl-3.2.0 | hd590300_1 2.7 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
pip-23.3.2 | pyhd8ed1ab_0 1.3 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
python-3.7.12 |hf930737_100_cpython 57.3 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
setuptools-69.0.3 | pyhd8ed1ab_0 460 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
wheel-0.42.0 | pyhd8ed1ab_0 56 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
------------------------------------------------------------
Total: 62.0 MB
The following NEW packages will be INSTALLED:
_libgcc_mutex anaconda/cloud/conda-forge/linux-64::_libgcc_mutex-0.1-conda_forge
_openmp_mutex anaconda/cloud/conda-forge/linux-64::_openmp_mutex-4.5-2_gnu
ca-certificates anaconda/cloud/conda-forge/linux-64::ca-certificates-2023.11.17-hbcca054_0
ld_impl_linux-64 anaconda/cloud/conda-forge/linux-64::ld_impl_linux-64-2.40-h41732ed_0
libffi anaconda/cloud/conda-forge/linux-64::libffi-3.4.2-h7f98852_5
libgcc-ng anaconda/cloud/conda-forge/linux-64::libgcc-ng-13.2.0-h807b86a_3
libgomp anaconda/cloud/conda-forge/linux-64::libgomp-13.2.0-h807b86a_3
libnsl anaconda/cloud/conda-forge/linux-64::libnsl-2.0.1-hd590300_0
libsqlite anaconda/cloud/conda-forge/linux-64::libsqlite-3.44.2-h2797004_0
libstdcxx-ng anaconda/cloud/conda-forge/linux-64::libstdcxx-ng-13.2.0-h7e041cc_3
libzlib anaconda/cloud/conda-forge/linux-64::libzlib-1.2.13-hd590300_5
ncurses anaconda/cloud/conda-forge/linux-64::ncurses-6.4-h59595ed_2
openssl anaconda/cloud/conda-forge/linux-64::openssl-3.2.0-hd590300_1
pip anaconda/cloud/conda-forge/noarch::pip-23.3.2-pyhd8ed1ab_0
python anaconda/cloud/conda-forge/linux-64::python-3.7.12-hf930737_100_cpython
readline anaconda/cloud/conda-forge/linux-64::readline-8.2-h8228510_1
setuptools anaconda/cloud/conda-forge/noarch::setuptools-69.0.3-pyhd8ed1ab_0
sqlite anaconda/cloud/conda-forge/linux-64::sqlite-3.44.2-h2c6b66d_0
tk anaconda/cloud/conda-forge/linux-64::tk-8.6.13-noxft_h4845f30_101
wheel anaconda/cloud/conda-forge/noarch::wheel-0.42.0-pyhd8ed1ab_0
xz anaconda/cloud/conda-forge/linux-64::xz-5.2.6-h166bdaf_0
Proceed ([y]/n)? y
Downloading and Extracting Packages
openssl-3.2.0 | 2.7 MB | ############################################################################################################### | 100%
setuptools-69.0.3 | 460 KB | ############################################################################################################### | 100%
pip-23.3.2 | 1.3 MB | ############################################################################################################### | 100%
libffi-3.4.2 | 57 KB | ############################################################################################################### | 100%
wheel-0.42.0 | 56 KB | ############################################################################################################### | 100%
libnsl-2.0.1 | 33 KB | ############################################################################################################### | 100%
python-3.7.12 | 57.3 MB | ############################################################################################################### | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
# $ conda activate tensorflow_gpu_1_15
#
# To deactivate an active environment, use
#
# $ conda deactivate
进入conda虚拟环境
conda activate tensorflow_gpu_1_15
使用conda安装tensorflow-gpu==1.15.0
conda install tensorflow-gpu==1.15.0
$ conda install tensorflow-gpu==1.15.0
Collecting package metadata (current_repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Collecting package metadata (repodata.json): done
Solving environment: done
==> WARNING: A newer version of conda exists. <==
current version: 4.10.1
latest version: 23.11.0
Please update conda by running
$ conda update -n base -c defaults conda
## Package Plan ##
environment location: /home/maohuifei/anaconda3/envs/tensorflow_gpu_1_15
added / updated specs:
- tensorflow-gpu==1.15.0
The following packages will be downloaded:
package | build
---------------------------|-----------------
absl-py-0.15.0 | pyhd8ed1ab_0 98 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
c-ares-1.25.0 | hd590300_0 153 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
cudatoolkit-10.0.130 | h9ed11e1_12 265.0 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
cudnn-7.6.5.32 | ha8d7eb6_1 226.2 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
cupti-10.0.130 | 0 1.5 MB defaults
gast-0.2.2 | py_0 10 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
grpc-cpp-1.48.1 | hc2bec63_1 5.4 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
grpcio-1.48.1 | py37h42e856d_1 818 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
h5py-3.7.0 |nompi_py37hf1ce037_101 1.3 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
hdf5-1.12.2 |nompi_h4df4325_101 3.2 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
importlib-metadata-4.11.4 | py37h89c1867_0 33 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
krb5-1.21.2 | h659d440_0 1.3 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libabseil-20220623.0 | cxx17_h05df665_6 1.1 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libaec-1.1.2 | h59595ed_1 34 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libblas-3.9.0 |20_linux64_openblas 14 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libcblas-3.9.0 |20_linux64_openblas 14 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libcurl-8.5.0 | hca28451_0 380 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libev-4.33 | hd590300_2 110 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libgfortran-ng-13.2.0 | h69a702a_3 23 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libgfortran5-13.2.0 | ha4646dd_3 1.4 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
liblapack-3.9.0 |20_linux64_openblas 14 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libnghttp2-1.58.0 | h47da74e_1 617 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libopenblas-0.3.25 |pthreads_h413a1c8_0 5.3 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libprotobuf-3.20.1 | h6239696_4 2.6 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libssh2-1.11.0 | h0841786_0 265 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
markdown-3.5.2 | pyhd8ed1ab_0 75 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
numpy-1.21.6 | py37h976b520_0 6.1 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
opt_einsum-3.3.0 | pyhc1e730c_2 57 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
protobuf-3.20.1 | py37hd23a5d3_0 329 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
python_abi-3.7 | 4_cp37m 6 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
re2-2022.06.01 | h27087fc_1 191 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
scipy-1.7.3 | py37hf2a6cf1_0 21.8 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
tensorboard-1.15.0 | py37_0 3.8 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
tensorflow-1.15.0 |gpu_py37h0f0df58_0 4 KB defaults
tensorflow-base-1.15.0 |gpu_py37h9dcbed7_0 156.5 MB defaults
tensorflow-estimator-1.15.1| pyh2649769_0 271 KB defaults
tensorflow-gpu-1.15.0 | h0d30ee6_0 3 KB defaults
typing_extensions-4.7.1 | pyha770c72_0 35 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
werkzeug-0.16.1 | py_0 255 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
wrapt-1.14.1 | py37h540881e_0 50 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
zipp-3.15.0 | pyhd8ed1ab_0 17 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
zstd-1.5.5 | hfc55251_0 532 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
------------------------------------------------------------
Total: 706.6 MB
The following NEW packages will be INSTALLED:
_tflow_select pkgs/main/linux-64::_tflow_select-2.1.0-gpu
absl-py anaconda/cloud/conda-forge/noarch::absl-py-0.15.0-pyhd8ed1ab_0
astor anaconda/cloud/conda-forge/noarch::astor-0.8.1-pyh9f0ad1d_0
c-ares anaconda/cloud/conda-forge/linux-64::c-ares-1.25.0-hd590300_0
cached-property anaconda/cloud/conda-forge/noarch::cached-property-1.5.2-hd8ed1ab_1
cached_property anaconda/cloud/conda-forge/noarch::cached_property-1.5.2-pyha770c72_1
cudatoolkit anaconda/cloud/conda-forge/linux-64::cudatoolkit-10.0.130-h9ed11e1_12
cudnn anaconda/cloud/conda-forge/linux-64::cudnn-7.6.5.32-ha8d7eb6_1
cupti pkgs/main/linux-64::cupti-10.0.130-0
gast anaconda/cloud/conda-forge/noarch::gast-0.2.2-py_0
google-pasta anaconda/cloud/conda-forge/noarch::google-pasta-0.2.0-pyh8c360ce_0
grpc-cpp anaconda/cloud/conda-forge/linux-64::grpc-cpp-1.48.1-hc2bec63_1
grpcio anaconda/cloud/conda-forge/linux-64::grpcio-1.48.1-py37h42e856d_1
h5py anaconda/cloud/conda-forge/linux-64::h5py-3.7.0-nompi_py37hf1ce037_101
hdf5 anaconda/cloud/conda-forge/linux-64::hdf5-1.12.2-nompi_h4df4325_101
importlib-metadata anaconda/cloud/conda-forge/linux-64::importlib-metadata-4.11.4-py37h89c1867_0
keras-applications anaconda/cloud/conda-forge/noarch::keras-applications-1.0.8-py_1
keras-preprocessi~ anaconda/cloud/conda-forge/noarch::keras-preprocessing-1.1.2-pyhd8ed1ab_0
keyutils anaconda/cloud/conda-forge/linux-64::keyutils-1.6.1-h166bdaf_0
krb5 anaconda/cloud/conda-forge/linux-64::krb5-1.21.2-h659d440_0
libabseil anaconda/cloud/conda-forge/linux-64::libabseil-20220623.0-cxx17_h05df665_6
libaec anaconda/cloud/conda-forge/linux-64::libaec-1.1.2-h59595ed_1
libblas anaconda/cloud/conda-forge/linux-64::libblas-3.9.0-20_linux64_openblas
libcblas anaconda/cloud/conda-forge/linux-64::libcblas-3.9.0-20_linux64_openblas
libcurl anaconda/cloud/conda-forge/linux-64::libcurl-8.5.0-hca28451_0
libedit anaconda/cloud/conda-forge/linux-64::libedit-3.1.20191231-he28a2e2_2
libev anaconda/cloud/conda-forge/linux-64::libev-4.33-hd590300_2
libgfortran-ng anaconda/cloud/conda-forge/linux-64::libgfortran-ng-13.2.0-h69a702a_3
libgfortran5 anaconda/cloud/conda-forge/linux-64::libgfortran5-13.2.0-ha4646dd_3
liblapack anaconda/cloud/conda-forge/linux-64::liblapack-3.9.0-20_linux64_openblas
libnghttp2 anaconda/cloud/conda-forge/linux-64::libnghttp2-1.58.0-h47da74e_1
libopenblas anaconda/cloud/conda-forge/linux-64::libopenblas-0.3.25-pthreads_h413a1c8_0
libprotobuf anaconda/cloud/conda-forge/linux-64::libprotobuf-3.20.1-h6239696_4
libssh2 anaconda/cloud/conda-forge/linux-64::libssh2-1.11.0-h0841786_0
markdown anaconda/cloud/conda-forge/noarch::markdown-3.5.2-pyhd8ed1ab_0
numpy anaconda/cloud/conda-forge/linux-64::numpy-1.21.6-py37h976b520_0
opt_einsum anaconda/cloud/conda-forge/noarch::opt_einsum-3.3.0-pyhc1e730c_2
protobuf anaconda/cloud/conda-forge/linux-64::protobuf-3.20.1-py37hd23a5d3_0
python_abi anaconda/cloud/conda-forge/linux-64::python_abi-3.7-4_cp37m
re2 anaconda/cloud/conda-forge/linux-64::re2-2022.06.01-h27087fc_1
scipy anaconda/cloud/conda-forge/linux-64::scipy-1.7.3-py37hf2a6cf1_0
six anaconda/cloud/conda-forge/noarch::six-1.16.0-pyh6c4a22f_0
tensorboard anaconda/cloud/conda-forge/linux-64::tensorboard-1.15.0-py37_0
tensorflow pkgs/main/linux-64::tensorflow-1.15.0-gpu_py37h0f0df58_0
tensorflow-base pkgs/main/linux-64::tensorflow-base-1.15.0-gpu_py37h9dcbed7_0
tensorflow-estima~ pkgs/main/noarch::tensorflow-estimator-1.15.1-pyh2649769_0
tensorflow-gpu pkgs/main/linux-64::tensorflow-gpu-1.15.0-h0d30ee6_0
termcolor anaconda/cloud/conda-forge/noarch::termcolor-1.1.0-pyhd8ed1ab_3
typing_extensions anaconda/cloud/conda-forge/noarch::typing_extensions-4.7.1-pyha770c72_0
werkzeug anaconda/cloud/conda-forge/noarch::werkzeug-0.16.1-py_0
wrapt anaconda/cloud/conda-forge/linux-64::wrapt-1.14.1-py37h540881e_0
zipp anaconda/cloud/conda-forge/noarch::zipp-3.15.0-pyhd8ed1ab_0
zlib anaconda/cloud/conda-forge/linux-64::zlib-1.2.13-hd590300_5
zstd anaconda/cloud/conda-forge/linux-64::zstd-1.5.5-hfc55251_0
Proceed ([y]/n)? y
Downloading and Extracting Packages
grpcio-1.48.1 | 818 KB | ############################################################################################################### | 100%
hdf5-1.12.2 | 3.2 MB | ############################################################################################################### | 100%
protobuf-3.20.1 | 329 KB | ############################################################################################################### | 100%
grpc-cpp-1.48.1 | 5.4 MB | ############################################################################################################### | 100%
zstd-1.5.5 | 532 KB | ############################################################################################################### | 100%
libcurl-8.5.0 | 380 KB | ############################################################################################################### | 100%
absl-py-0.15.0 | 98 KB | ############################################################################################################### | 100%
gast-0.2.2 | 10 KB | ############################################################################################################### | 100%
libabseil-20220623.0 | 1.1 MB | ############################################################################################################### | 100%
cupti-10.0.130 | 1.5 MB | ############################################################################################################### | 100%
libnghttp2-1.58.0 | 617 KB | ############################################################################################################### | 100%
c-ares-1.25.0 | 153 KB | ############################################################################################################### | 100%
libaec-1.1.2 | 34 KB | ############################################################################################################### | 100%
libgfortran5-13.2.0 | 1.4 MB | ############################################################################################################### | 100%
cudnn-7.6.5.32 | 226.2 MB | ############################################################################################################### | 100%
libopenblas-0.3.25 | 5.3 MB | ############################################################################################################### | 100%
libcblas-3.9.0 | 14 KB | ############################################################################################################### | 100%
zipp-3.15.0 | 17 KB | ############################################################################################################### | 100%
tensorflow-estimator | 271 KB | ############################################################################################################### | 100%
opt_einsum-3.3.0 | 57 KB | ############################################################################################################### | 100%
re2-2022.06.01 | 191 KB | ############################################################################################################### | 100%
cudatoolkit-10.0.130 | 265.0 MB | ############################################################################################################### | 100%
libev-4.33 | 110 KB | ############################################################################################################### | 100%
typing_extensions-4. | 35 KB | ############################################################################################################### | 100%
h5py-3.7.0 | 1.3 MB | ############################################################################################################### | 100%
scipy-1.7.3 | 21.8 MB | ############################################################################################################### | 100%
krb5-1.21.2 | 1.3 MB | ############################################################################################################### | 100%
importlib-metadata-4 | 33 KB | ############################################################################################################### | 100%
tensorflow-1.15.0 | 4 KB | ############################################################################################################### | 100%
liblapack-3.9.0 | 14 KB | ############################################################################################################### | 100%
wrapt-1.14.1 | 50 KB | ############################################################################################################### | 100%
tensorflow-base-1.15 | 156.5 MB | ############################################################################################################### | 100%
werkzeug-0.16.1 | 255 KB | ############################################################################################################### | 100%
numpy-1.21.6 | 6.1 MB | ############################################################################################################### | 100%
tensorboard-1.15.0 | 3.8 MB | ############################################################################################################### | 100%
markdown-3.5.2 | 75 KB | ############################################################################################################### | 100%
libgfortran-ng-13.2. | 23 KB | ############################################################################################################### | 100%
libssh2-1.11.0 | 265 KB | ############################################################################################################### | 100%
tensorflow-gpu-1.15. | 3 KB | ############################################################################################################### | 100%
libblas-3.9.0 | 14 KB | ############################################################################################################### | 100%
python_abi-3.7 | 6 KB | ############################################################################################################### | 100%
libprotobuf-3.20.1 | 2.6 MB | ############################################################################################################### | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: / By downloading and using the CUDA Toolkit conda packages, you accept the terms and conditions of the CUDA End User License Agreement (EULA): https://docs.nvidia.com/cuda/eula/index.html
| By downloading and using the cuDNN conda packages, you accept the terms and conditions of the NVIDIA cuDNN EULA -
https://docs.nvidia.com/deeplearning/cudnn/sla/index.html
done
测试tensorflow gpu版本是否安装成功
gpu_test.py
import tensorflow as tf
gpu_device_name = tf.test.gpu_device_name()
print("gpu_device_name=",gpu_device_name)
python gpu_test.py
(tensorflow_gpu_1_15) maohuifei@SHXHU-M70QBGR6:~/work/python_project/tensorflow_models_learning$ python gpu_test.py
2024-01-16 10:01:14.662246: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2024-01-16 10:01:14.686861: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3892650000 Hz
2024-01-16 10:01:14.687357: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55ceca3bb9b0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2024-01-16 10:01:14.687378: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
2024-01-16 10:01:14.688973: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2024-01-16 10:01:14.776865: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-01-16 10:01:14.777118: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55cec8fbd420 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2024-01-16 10:01:14.777138: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): NVIDIA GeForce RTX 3060, Compute Capability 8.6
2024-01-16 10:01:14.777847: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-01-16 10:01:14.777985: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: NVIDIA GeForce RTX 3060 major: 8 minor: 6 memoryClockRate(GHz): 1.777
pciBusID: 0000:01:00.0
2024-01-16 10:01:14.778225: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0
2024-01-16 10:01:14.779334: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0
2024-01-16 10:01:14.780177: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10.0
2024-01-16 10:01:14.780381: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10.0
2024-01-16 10:01:14.781513: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10.0
2024-01-16 10:01:14.782380: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10.0
2024-01-16 10:01:14.812891: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2024-01-16 10:01:14.813083: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-01-16 10:01:14.813315: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-01-16 10:01:14.813447: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2024-01-16 10:01:14.813522: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0
2024-01-16 10:01:14.814677: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2024-01-16 10:01:14.814700: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2024-01-16 10:01:14.814710: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2024-01-16 10:01:14.814859: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-01-16 10:01:14.815045: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-01-16 10:01:14.815196: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/device:GPU:0 with 5418 MB memory) -> physical GPU (device: 0, name: NVIDIA GeForce RTX 3060, pci bus id: 0000:01:00.0, compute capability: 8.6)
gpu_device_name= /device:GPU:0