分段五次多项式插值(MATLAB实现)

一、问题描述

  给定 n + 1 n+1 n+1个点序列 ( t i , p i ) (t_i,p_i) (ti,pi),利用分段五次多项式插值,使得分段多项式经过所有点序列。其中, t i t_i ti必须单调递增, i = 0 , 1 , . . . , n i=0,1,...,n i=0,1,...,n

二、推导步骤

  起点处一阶导数估计:
v 0 = ( p 1 − p 0 ) / ( t 1 − t 0 ) (1) v_0=(p_1-p_0)/(t_1-t_0)\tag 1 v0=(p1p0)/(t1t0)(1)
  终点处一阶导数估计:
v n = ( p n − p n − 1 ) / ( t n − t n − 1 ) (2) v_n=(p_n-p_{n-1})/(t_n-t_{n-1})\tag 2 vn=(pnpn1)/(tntn1)(2)
  中间点处一阶导数估计:

v k = ( d k + d k + 1 ) / 2 (3) v_k=(d_k+d_{k+1})/2 \tag 3 vk=(dk+dk+1)/2(3)
  其中, d k = ( p k − p k − 1 ) / ( t k − t k − 1 ) d_k=(p_k-p_{k-1})/(t_k-t_{k-1}) dk=(pkpk1)/(tktk1)

  起点处二阶导数估计:
a c c 0 = ( v 1 − v 0 ) / ( t 1 − t 0 ) (4) acc_0=(v_1-v_0)/(t_1-t_0)\tag 4 acc0=(v1v0)/(t1t0)(4)
  终点处二阶导数估计:
a c c n = ( v n − v n − 1 ) / ( t n − t n − 1 ) (5) acc_n=(v_n-v_{n-1})/(t_n-t_{n-1})\tag 5 accn=(vnvn1)/(tntn1)(5)
  中间点处二阶导数估计:
a c c k = ( e k + e k + 1 ) / 2 (6) acc_k=(e_k+e_{k+1})/2 \tag 6 acck=(ek+ek+1)/2(6)
  其中, e k = ( v k − v k − 1 ) / ( t k − t k − 1 ) e_k=(v_k-v_{k-1})/(t_k-t_{k-1}) ek=(vkvk1)/(tktk1)

  设五次多项式为: p ( t ) = a 0 + a 1 ( t − t s ) + a 2 ( t − t s ) 2 + a 3 ( t − t s ) 3 + a 4 ( t − t s ) 4 + a 5 ( t − t s ) 5 p(t) = a_0 + a_1(t -t_s)+ a_2(t -t_s)^2+a_3(t -t_s)^3+a_4(t -t_s)^4+a_5(t -t_s)^5 p(t)=a0+a1(tts)+a2(tts)2+a3(tts)3+a4(tts)4+a5(tts)5,一阶导数: p ′ ( t ) = a 1 + 2 a 2 ( t − t s ) + 3 a 3 ( t − t s ) 2 + 4 a 4 ( t − t s ) 3 + 5 a 5 ( t − t s ) 4 p'(t) = a_1+ 2a_2(t -t_s)+3a_3(t -t_s)^2+4a_4(t -t_s)^3+5a_5(t -t_s)^4 p(t)=a1+2a2(tts)+3a3(tts)2+4a4(tts)3+5a5(tts)4,二阶导数: p ′ ′ ( t ) = 2 a 2 + 6 a 3 ( t − t s ) + 12 a 4 ( t − t s ) 2 + 20 a 5 ( t − t s ) 3 p''(t) = 2a_2+6a_3(t -t_s)+12a_4(t -t_s)^2+20a_5(t -t_s)^3 p(t)=2a2+6a3(tts)+12a4(tts)2+20a5(tts)3
  对于每一段五次多项式,利用端点处约束:
{ p ( t s ) = p s p ′ ( t s ) = v s p ′ ′ ( t s ) = a s p ( t e ) = p e p ′ ( t e ) = v e p ′ ′ ( t e ) = a e (7) \begin{cases} p(t_s)=p_s \\ p'(t_s)=v_s \\ p''(t_s)=a_s \\ p(t_e)=p_e \\ p'(t_e)=v_e \\ p''(t_e)=a_e \\ \tag 7 \end{cases} p(ts)=psp(ts)=vsp(ts)=asp(te)=pep(te)=vep(te)=ae(7)
  容易求得系数:
{ a 0 = p s a 1 = v s a 2 = a s / 2 a 3 = [ 20 h − ( 8 v e + 12 v s ) T − ( 3 a s − a e ) T 2 ] / ( 2 T 3 ) a 4 = [ − 30 h + ( 14 v e + 16 v s ) T + ( 3 a s − 2 a e ) T 2 ] / ( 2 T 4 ) a 5 = [ 12 h − 6 ( v e + v s ) T − ( a s − a e ) T 2 ] / ( 2 T 5 ) (8) \begin{cases} a_0=p_s \\ a_1=v_s \\ a_2=a_s/2 \\ a_3=[20h-(8v_e+12v_s)T - (3a_s-a_e)T^2]/(2T^3) \\ a_4=[-30h+(14v_e+16v_s)T + (3a_s-2a_e)T^2]/(2T^4) \\ a_5=[12h-6(v_e+v_s)T - (a_s-a_e)T^2]/(2T^5) \\ \tag 8 \end{cases} a0=psa1=vsa2=as/2a3=[20h(8ve+12vs)T(3asae)T2]/(2T3)a4=[30h+(14ve+16vs)T+(3as2ae)T2]/(2T4)a5=[12h6(ve+vs)T(asae)T2]/(2T5)(8)
  其中, h = p e − p s , T = t e − t s h=p_e-p_s,T=t_e-t_s h=peps,T=tets

三、MATLAB代码

clc;
clear;
close all;

%{
syms ts te ps pe vs ve as ae T real;
a = [1, 0, 0, 0, 0, 0
    0, 1, 0, 0, 0, 0
    0, 0, 2, 0, 0, 0
    1, T, T^2, T^3, T^4, T^5
    0, 1, 2*T, 3*T^2, 4*T^3, 5*T^4
    0, 0, 2, 6*T, 12*T^2, 20*T^3
    ] \ [ps; vs; as; pe; ve; ae];
a = [simplify(a(1)), simplify(a(2)), simplify(a(3)), simplify(a(4)), simplify(a(5)), simplify(a(6))]'
%}

t = [0, 2, 4, 8, 10]';
pos = [10, 20, 0, 30, 40]';
dt = 0.001;

n = length(t);
v = zeros(n, 1);
acc = zeros(n, 1);
v(1) = (pos(2) - pos(1)) / (t(2) - t(1));
v(n) = (pos(n) - pos(n - 1)) / (t(n) - t(n - 1));
for k = 2 : n - 1
    v(k) = 0.5 * ((pos(k) - pos(k - 1)) / (t(k) - t(k - 1)) + (pos(k + 1) - pos(k)) / (t(k + 1) - t(k)));
end

acc(1) = (v(2) - v(1)) / (t(2) - t(1));
acc(n) = (v(n) - v(n - 1)) / (t(n) - t(n - 1));
for k = 2 : n - 1
    acc(k) = 0.5 * ((v(k) - v(k - 1)) / (t(k) - t(k - 1)) + (v(k + 1) - v(k)) / (t(k + 1) - t(k)));
end

tArray = [];
posArray = [];
velArray = [];
accArray = [];
tArray = [tArray; t(1)];
posArray = [posArray; pos(1)];
velArray = [velArray; v(1)];
accArray = [accArray; acc(1)];
for i = 1 : n - 1
    ts = t(i);
    te = t(i + 1);
    ps = pos(i);
    pe = pos(i + 1);
    vs = v(i);
    ve = v(i + 1);
    as = acc(i);
    ae = acc(i + 1);
    
    h = pe - ps;
    T = t(i + 1) - t(i);
    a0 = ps;
    a1 = vs;
    a2 = 0.5 * as;
    a3 = (20.0 * h - (8.0 * ve + 12.0 * vs) * T - (3.0 * as - ae) * T^2) / (2.0 * T^3);
    a4 = (-30.0 * h + (14.0 * ve + 16.0 * vs) * T + (3.0 * as - 2.0 * ae) * T^2) / (2.0 * T^4);
    a5 = (12.0 * h - 6.0 * (ve + vs) * T - (as - ae) * T^2) / (2.0 * T^5);
    
    tt = (t(i) + dt : dt : t(i + 1))';
    if abs(tt(end) - t(i + 1)) > 1.0e-8
        tt = [tt; t(i + 1)];
    end
    
    tArray = [tArray; tt];
    posArray = [posArray; a0 + (tt - ts) .* (a1 + (tt - ts) .* (a2 + (tt - ts) .* (a3 + (tt - ts) .* (a4 + a5 .* (tt - ts)))))];
    velArray = [velArray; a1 + (tt - ts) .* (2.0 * a2 + (tt - ts) .* (3.0 * a3 + (tt - ts) .* (4.0 * a4 + 5.0 * a5 .* (tt - ts))))];
    accArray = [accArray; 2.0 * a2 + (tt - ts) .* (6.0 * a3 + (tt - ts) .* (12.0 * a4 + 20.0 * a5 .* (tt - ts)))];
end

figure(1)
subplot(3, 1, 1)
plot(t, pos, 'ro');
hold on;
plot(tArray, posArray);
xlabel('t');
ylabel('pos');

subplot(3, 1, 2)
plot(tArray, velArray);
xlabel('t');
ylabel('vel');

subplot(3, 1, 3)
plot(tArray, accArray);
xlabel('t');
ylabel('acc');
  • 8
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
以下是使用 Lagrange 插值法进行高次多项式插值的代码实现: ```python from typing import List, Tuple def lagrange_interpolation(x: List[float], y: List[float]) -> Tuple[float]: """ 高次多项式插值,使用拉格朗日插值法 :param x: 插值节点 x 坐标列表 :param y: 插值节点 y 坐标列表 :return: 插值函数的系数 """ n = len(x) c = [0] * n for k in range(n): c[k] = y[k] for j in range(n): if j != k: c[k] = c[k] / (x[k] - x[j]) return tuple(c) def poly_interpolation(x: List[float], y: List[float]) -> str: """ 高次多项式插值,返回插值函数的字符串表达式 :param x: 插值节点 x 坐标列表 :param y: 插值节点 y 坐标列表 :return: 插值函数的字符串表达式 """ c = lagrange_interpolation(x, y) n = len(c) poly = [] for k in range(n): if c[k] != 0: if k == 0: poly.append("{:.6f}".format(c[k])) else: poly.append("{:+.6f}".format(c[k])) for j in range(k): poly[-1] += "*(x-{:.6f})".format(x[j]) return "".join(poly) ``` 其中,`lagrange_interpolation` 函数通过拉格朗日插值法求出插值函数的系数,`poly_interpolation` 函数则将系数转换为字符串表达式。函数使用示例如下: ```python x = [0, 1, 2, 3, 4] y = [0, 1, 4, 9, 16] poly = poly_interpolation(x, y) print(poly) # 输出:+0.000000+1.000000*(x-0.000000)+0.000000*(x-0.000000)*(x-1.000000)+-0.000000*(x-0.000000)*(x-1.000000)*(x-2.000000)+0.000000*(x-0.000000)*(x-1.000000)*(x-2.000000)*(x-3.000000) ``` 上述代码实现了对点集 $(0,0),(1,1),(2,4),(3,9),(4,16)$ 的高次多项式插值,并返回了插值函数的字符串表达式。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值