使用五次多项式插值jtraj进行关节空间轨迹规划的matlab仿真

本文详细介绍了机械臂的运动轨迹规划,通过MATLAB实现五次多项式插值,展示了从关节空间到笛卡尔空间的转换,并利用插值结果描绘了机械臂在空间中的运动轨迹。同时,解释了如何获取末端执行器的位姿,以及如何绘制关节的位置、速度和加速度图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

👨‍🏫🥰🥳需要机械臂相关资源的同学可以在评论区中留言哦🤖😽🦄

指南目录📖:

🎉🎉机械臂速成小指南(零点五):机械臂相关资源🎉🎉

机械臂速成小指南(零):指南主要内容及分析方法

机械臂速成小指南(一):机械臂发展概况

机械臂速成小指南(二):机械臂的应用

机械臂速成小指南(三):机械臂的机械结构

机械臂速成小指南(四):机械臂关键部件之减速机

机械臂速成小指南(五):末端执行器

机械臂速成小指南(六):步进电机驱动器

机械臂速成小指南(七):机械臂位姿的描述方法

机械臂速成小指南(八):运动学建模(标准DH法)

机械臂速成小指南(九):正运动学分析

机械臂速成小指南(十):可达工作空间

机械臂速成小指南(十一):坐标系的标准命名

机械臂速成小指南(十二):逆运动学分析

机械臂速成小指南(十三):轨迹规划概述

机械臂速成小指南(十四):多项式插值轨迹规划

机械臂速成小指南(十五):线性规划

机械臂速成小指南(十六):带抛物线过渡的线性规划

机械臂速成小指南(十七):直线规划 

机械臂速成小指南(十八):圆弧规划

机械臂速成小指南(十九):机械臂的电路板抓取实验

机械臂速成小指南(二十):机械臂的位姿重复性实验

🦾🌏🪐以下为正文🦾🌏🪐

去官网下载后,在此安装机器人工具箱

        第一步,我们使用下列语句👇实现五次多项式插值(使用前需安装The Robotics Toolbox for MATLAB,可直接在官网下载)

M=50;
[q, qd, qdd]=jtraj(q_0,q_final,M); #没有指定机械臂起点速度以及终点速度,默认为0
#若需要指定起点速度以及终点速度,上式改为[q, qd, qdd]=jtraj(q_0,q_final,M,v_0,v_final);
#v_0与v_final分别为起点速度以及终点速度
#q_0,q_final,M分别为起始点、终点以及插值的步数

         设机械臂的自由度为N=6,所插多项式曲线表示关节空间轨迹q,关节坐标从q_0 (1xN)到q_final (1xN)的变化。该五次多项式被用于默认速度和加速度为零的边界条件,即在起点和终点处机械臂的速度与加速度均为0。

        式中,q,qd与qdd均为M×N的数组,每个时间步长一行,每个关节一列。以本文为例,工作区中三者显示为:

        第二步,使用下方语句得到末端执行器的位姿

T=robot2.fkine(q);

  其中,T的类型为SE3,无法直接在空间中描绘

 使用下方语句转换

nT=T.T;

 nt可看作50个插值点的齐次变换矩阵

         第三步,使用下方语句在空间中描点

plot3(squeeze(nT(1,4,:)),squeeze(nT(2,4,:)),squeeze(nT(3,4,:)));

其中squeeze()的作用是删除长度为 1 的维度,如第一个squeeze(nT(1,4,:))的作用是将nT(1,4,:)从1×1×50的数组变为1×50的数组。

最终可以得到机械臂在空间中的运动轨迹如下图所示:

        最后,使用简单的plot函数得到机械臂位置、速度与加速度的图像

图中显示的是关节1在空间中的角度、角速度以及角加速度
根据引用和引用,MATLAB中的五次多项式插值是通过给定一系列点的序列和约束条件,使用分段五次多项式插值的方法,使得分段多项式经过所有点序列。这里的约束条件包括点序列的递增性和插值函数的连续性。 具体来说,MATLAB中的五次多项式插值可以通过以下步骤实现: 1. 给定n+1个点的序列 (t_i, p_i),其中 ti 是时间或位置的序列,pi 是对应的数值序列。 2. 确保点序列满足 ti 的递增性,即 ti 是单调递增的。 3. 利用五次多项式插值方法,将每个相邻点的时间范围内的函数值用五次多项式连接起来,使得插值多项式经过所有点序列。 4. 根据五次多项式插值的原理,可以得到每个插值段的表达式和约束条件。这些约束条件包括插值函数在相邻段交接点处的连续性,以及一阶、二阶导数在插值点处的连续性等。 5. 通过求解这些约束条件,可以得到插值函数的表达式和参数。 6. 最后,利用得到的插值函数,可以对任意时间或位置进行预测或估计。 通过采用五次多项式插值方法,MATLAB可以实现平滑、稳定的关节空间轨迹,并保证速度平滑、加速度不突变,如引用中所述。 总之,MATLAB五次多项式插值法可以通过给定点序列和约束条件,利用分段五次多项式插值的方法来实现。这种插值方法能够保证插值函数经过所有点序列,并满足约束条件,从而实现平滑、稳定的插值效果。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [机械轨迹规划篇(二)MATLAB测试五次多项式样条插值](https://blog.csdn.net/qq_43412584/article/details/109669171)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [分段五次多项式插值(MATLAB实现)](https://blog.csdn.net/maple_2014/article/details/106560515)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

z530011

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值