目标检测(R-CNN)系列(Pytorch 26)

一 R-CNN

除了之前描述的单发多框检测之外,区域卷积神经网络(region‐based CNN或regions with CNN features, R‐CNN)(Girshick et al., 2014)也是将深度模型应用于目标检测的开创性工作之一。下面介绍R‐CNN及其一 系列改进方法:快速的R‐CNN(Fast R‐CNN)(Girshick, 2015)、更快的R‐CNN(Faster R‐CNN)(Ren et al., 2015)和掩码R‐CNN(Mask R‐CNN)(He et al., 2017)。限于篇幅,我们只着重介绍这些模型的设计思路。

R-CNN首先从输入图像中选取若干(例如2000个)提议区域(如锚框也是一种选取方法),并标注它们的类别 和边界框(如偏移量)。(Girshick et al., 2014)然后,用卷积神经网络对每个提议区域进行前向传播以抽取其 特征。接下来,我们用每个提议区域的特征来预测类别和边界框。

具体来说,R‐CNN包括以下四个步骤:

  1. 对输入图像 使用选择性搜索来选取多个高质量的提议区域 (Uijlings et al., 2013)。这些提议区域通常是在多个尺度下选取的,并具有不同的形状和大小。每个提议区域都将被标注类别和真实边界框
  2. 选择一个预训练的卷积神经网络,并将其在输出层之前截断。将每个提议区域变形为网络需要的输入尺寸,并通过前向传播输出抽取的提议区域特征;
  3. 每个提议区域的特征连同其标注的类别作为一个样本。训练多个支持向量机对目标分类,其中每个支持向量机用来判断样本是否属于某一个类别;
  4. 每个提议区域的特征连同其标注的边界框作为一个样本,训练线性回归模型来预测真实边界框。

尽管R‐CNN模型通过预训练的卷积神经网络有效地抽取了图像特征,但它的速度很慢。想象一下,我们可能 从一张图像中选出上千个提议区域,这需要上千次的卷积神经网络的前向传播来执行目标检测。这种庞大的计算量使得R‐CNN在现实世界中难以被广泛应用。

二 Fast R-CNN

R‐CNN的主要性能瓶颈在于,对每个提议区域,卷积神经网络的前向传播是独立的,而没有共享计算。由于 这些区域通常有重叠,独立的特征抽取会导致重复的计算。Fast R-CNN (Girshick, 2015)对R‐CNN的主要改进 之一,是仅在整张图象上执行卷积神经网络的前向传播。

Fast R‐CNN模型。它的主要计算如下:

  1. 与R‐CNN相比,Fast R‐CNN用来提取特征的卷积神经网络的输入是整个图像,而不是各个提议区域。此 外,这个网络通常会参与训练。设输入为一张图像,将卷积神经网络的输出的形状记为1 × c × h1 × w1;
  2. 假设选择性搜索生成了n个提议区域。这些形状各异的提议区域在卷积神经网络的输出上分别标出了形 状各异的兴趣区域。然后,这些感兴趣的区域需要进一步抽取出形状相同的特征(比如指定高度h2和宽 度w2),以便于连结后输出。为了实现这一目标,Fast R‐CNN引入了兴趣区域汇聚层(RoI pooling):将卷 积神经网络的输出和提议区域作为输入,输出连结后的各个提议区域抽取的特征,形状为n×c×h2×w2;
  3. 通过全连接层 将输出形状变换为n × d,其中超参数d取决于模型设计;
  4. 预测n个提议区域中每个区域的类别和边界框。更具体地说,在预测类别和边界框时,将全连接层的输出 分别转换为形状为n×q(q是类别的数量)的输出和形状为n×4的输出。其中预测类别时使用softmax回 归。

下面,我们演示了兴趣区域汇聚层的计算方法。假设卷积神经网络抽取的特征X的高度和宽度都是4,且只有单通道。

import torch
import torchvision
X = torch.arange(16.).reshape(1, 1, 4, 4)
X

让我们进一步假设输入图像的高度和宽度都是40像素,且选择性搜索在此图像上生成了两个提议区域。每个区域由5个元素表示:区域目标类别、左上角和右下角的(x, y)坐标

rois = torch.Tensor([[0, 0, 0, 20, 20], [0, 0, 10, 30, 30]])

由于X的高和宽是输入图像高和宽的1/10,因此,两个提议区域的坐标先按spatial_scale乘以0.1。然后,在X上 分别标出这两个兴趣区域X[:, :, 0:3, 0:3]和X[:, :, 1:4, 0:4]。最后,在2 × 2的兴趣区域汇聚层中, 每个兴趣区域被划分为子窗口网格,并进一步抽取相同形状2 × 2的特征。

torchvision.ops.roi_pool(X, rois, output_size=(2, 2), spatial_scale=0.1)

三 Faster R-CNN

为了较精确地检测目标结果,Fast R‐CNN模型通常需要在选择性搜索中生成大量的提议区域。Faster R-CNN (Ren et al., 2015)提出将选择性搜索替换为区域提议网络(region proposal network),从而减少提议区域的 生成数量,并保证目标检测的精度。

与Fast R‐CNN相比,Faster R‐CNN 只将生成提议区域的方法从选择性搜索改为了 区域提议网络,模型的其余部分保持不变。具体来说,区域提议网络的计算步骤如下:

  1. 使用填充为1的3 × 3的卷积层变换卷积神经网络的输出,并将输出通道数记为c。这样,卷积神经网络 为图像抽取的特征图中的每个单元均得到一个长度为c的新特征。
  2. 以特征图的每个像素为中心,生成多个不同大小和宽高比的锚框并标注它们
  3. 使用锚框中心单元长度为c的特征,分别预测该锚框的二元类别(含目标还是背景)和边界框。
  4. 使用非极大值抑制,从预测类别为目标的预测边界框中移除相似的结果。最终输出的预测边界框即是 兴趣区域汇聚层所需的提议区域。

值得一提的是,区域提议网络作为Faster R‐CNN模型的一部分,是和整个模型一起训练得到的。换句话说, Faster R‐CNN的目标函数不仅包括目标检测中的类别和边界框预测,还包括区域提议网络中锚框的二元类别 和边界框预测。作为端到端训练的结果,区域提议网络能够学习到如何生成高质量的提议区域,从而在减少了从数据中学习的提议区域的数量的情况下,仍保持目标检测的精度。

四 Mask R-CNN

如果在训练集中还标注了每个目标在图像上的像素级位置,那么Mask R-CNN (He et al., 2017)能够有效地利用这些详尽的标注信息进一步提升目标检测的精度。

Mask R‐CNN是基于Faster R‐CNN修改而来的。具体来说,Mask R‐CNN将兴趣区域汇聚层 替换为了 兴趣区域对齐层,使用双线性插值(bilinear interpolation)来保留特征图上的空间信息,从而更适于像素级预测。兴趣区域对齐层的输出包含了所有与兴趣区域的形状相同的特征图。它们不仅被用于预测 每个兴趣区域的类别和边界框,还通过额外的全卷积网络预测目标的像素级位置。

小结:

  • R‐CNN对图像选取若干提议区域,使用卷积神经网络对每个提议区域执行前向传播以抽取其特征,然后再用这些特征来预测提议区域的类别和边界框。
  • Fast R‐CNN对R‐CNN的一个主要改进:只对整个图像做卷积神经网络的前向传播。它还引入了兴趣区 域汇聚层,从而为具有不同形状的兴趣区域抽取相同形状的特征。
  • Faster R‐CNN将Fast R‐CNN中 使用的选择性搜索替换为参与训练的区域提议网络,这样后者可以在减少提议区域数量的情况下仍保证目标检测的精度。
  • Mask R‐CNN在Faster R‐CNN的基础上引入了一个全卷积网络,从而借助目标的像素级位置进一步提升目标检测的精度。

  • 26
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Faster R-CNN是一种常用的目标检测算法,它结合了区域提取网络(Region Proposal Network,RPN)和分类网络来实现物体检测。在使用Faster R-CNN进行目标检测时,通常需要将模型的源码进行微调,以适应自己的数据集。 在PyTorch中,微调Faster R-CNN的源码需要以下几个步骤: 1. 数据集准备:首先需要准备自己的目标检测数据集。该数据集需要包含图片和对应的标签信息,标签信息通常包括物体的类别和边界框坐标。可以使用标注工具如LabelImg等进行标注,并将标注结果保存为一种格式,如VOC格式。 2. 获取源码:从PyTorch官方的GitHub仓库中获取Faster R-CNN源码。可以使用git命令行或者直接在浏览器上下载源码的压缩包。 3. 修改数据集加载:在源码中找到数据集加载部分的代码。可以通过修改已有的数据集类或者新建一个数据集类来加载自己的数据集。在数据集类中,需要定义数据集的路径、读取图片和标签的方法等。 4. 修改训练设置:在源码中找到训练设置部分的代码。根据自己的需求修改训练的batch size、学习率、训练轮数等参数。可以根据实际情况调整这些参数,以获得更好的训练效果。 5. 开始微调:在终端中切换到源码所在的目录,并执行训练指令,如"python train.py"。这将开始使用自己的数据集对Faster R-CNN进行微调。在微调过程中,可以观察训练日志和损失曲线,以评估训练的效果。 6. 模型保存:微调完成后,可以将训练得到的模型保存下来,以便后续的测试和推理使用。可以将模型保存为一个.pth文件,以便后续加载和使用。 通过以上步骤,我们可以使用PyTorch实现对Faster R-CNN的源码进行微调,以适应自己的目标检测数据集。微调后的模型可以用于检测目标物体,并根据实际需要进行后续处理和应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值