这是一篇记录复现pointsift的文章。
论文全称:A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation
会议名称:Computer Vision and Pattern Recognition (CVPR) 2018
项目地址:https://github.com/MVIG-SJTU/pointSIFT
2020.9.22
01. 环境配置
1. CUDA 10.0, cuDNN(检查了一下竟然没装。。。)
2. Python 3.5, h5py
3. Tensorflow-gpu 1.4.1
4. 编译 TF operator
python=3.5, TF=1.4.1, cuda=10.0,根据github页面的步骤进行编译
首先找到TensorFlow的路径,python运行以下代码(如果是conda的环境,则要激活该环境再运行以下代码)
import tensorflow as tf
# include path
print(tf.sysconfig.get_include())
# library path
print(tf.sysconfig.get_lib())
输出就是TensorFlow的两个路径。然后将.sh文件中的路径修改成以上两个自己的路径(文件里初始是作者的TensorFlow路径),随后作者以sample文件夹的编译为例,使用三个命令进行了编译