一文速学ChatBi“与数据库对话“大模型技术原理及框架一览

前言

上期写了NL2SQL,相信看过的朋友应该都对现在大模型在数据交互办公层面的探索和发展都十分感兴趣,在此商业化的产品市场上也有很多,比如阿里云的析言GBI:
在这里插入图片描述腾讯云的ChatBI:

在这里插入图片描述
像此类的产品可以说是最贴切业务的。

在许多业务场景中,用户最关心的是如何快速获取最终的数据结果,而不是去理解数据是如何被提取和处理的。学习数据获取的复杂过程往往是一个高成本的障碍,而降低这一成本直接关系到产品的吸引力和用户的转化率。对于我们技术人员而言,尽管研发思维是核心,但我们开发的服务最终还是为了更好地服务于业务需求。随着技术的进步,自然语言到SQL(NL2SQL)转化已成为数据开发的未来趋势,它让用户能够用最少的学习成本获取他们所需的数据。ChatBI正是这一趋势的具体体现,它不仅降低了技术门槛,还显著提升了用户体验和产品竞争力,使数据分析变得更加直观和高效。

那么本期文章我们来研究DB-GPT这类技术

### 传统BIChatBI的区别、特点对比及各自适用场景 #### 区别特点对比 传统BI工具主要侧重于提供强大的数据处理能力和丰富的可视化功能。例如,Power BI 和 Tableau 这样的产品允许用户通过拖拽操作创建复杂的仪表板和报告,支持多种数据源连接以及深入的数据探索能力[^1]。 相比之下,ChatBI则更注重自然语言交互体验,在查询条件完全精确的情况下能够直接返回答案,并且可以适应不同的对话环境来满足用户的即时需求。这种方式特别适合那些希望快获取特定信息而不需要深入了解技术细节的人群[^2]。 #### 应用场景分析 对于需要高度准确性和复杂数据分析的传统业务流程来说,传统的BI解决方案仍然是首选。这些场合往往涉及大量历史数据的挖掘、多维分析模型的应用等任务,因此依赖稳定可靠的ETL过程和支持大规模并发访问的能力。 而在一些新兴领域或是日常运营决策过程中,则可能更适合采用基于聊天机器人的ChatBI平台。尤其是在面对非技术人员时,后者凭借其简便易懂的操作界面和灵活高效的沟通机制展现出明显优势;另外,在某些情况下还可以作为辅助手段帮助提高工作效率和服务质量。 ```python # 示例代码展示如何集成两种类型的BI工具到应用程序中 def integrate_bi_tools(): traditional_bi_tool = "PowerBI" chatbi_tool = "Custom ChatBot" # 集成传统BI工具 def use_traditional_bi(data_source): print(f"Using {traditional_bi_tool} to analyze data from {data_source}") # 使用ChatBI进行简单查询 def ask_chatbi(question): response = f"Answering '{question}' using {chatbi_tool}" return response return { 'use_traditional_bi': use_traditional_bi, 'ask_chatbi': ask_chatbi } ```
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fanstuck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值