伽罗瓦理论笔记暂记2

伽罗瓦理论笔记暂记1
伽罗瓦理论笔记暂记2
方程根式解笔记3
方程根式解笔记4

置换群(有限群与之同构)
扩张的理论

基本概念

伽罗瓦群:

设K是域F的有限扩张,则K的所有F-自同构的集合关于映射的乘法
构成一个群,称为K在F上的伽罗瓦群,记为Gal(K/F)

不变子域(K的G不变子域)InvG:

设G为域K的自同构群AutK的一个子群,则集合 a , a ∈ K ∣ g ( a ) = a , ∀ g ∈ G { a,a \in K| g(a)=a,\forall g\in G} a,aKg(a)=a,gG

伽罗瓦扩张:

若域F的有限扩张K满足 Inv (Gal(K/F))= F,
则称K是F的伽罗瓦扩张.
按照伽罗瓦群和不变子域的定义,一般有
F ⊆ I n v ( G a l ( K / F ) ) , F\subseteq Inv (Gal(K/F)), FInv(Gal(K/F)),
等号成立“K是域F的伽罗瓦扩张”

“K是域F的伽罗瓦扩张”,将是伽罗瓦基本定理成立的
条件.为了从不同角度去理解伽罗瓦扩张的特点.

定理:设K是域F的扩域,则下边三个条件是等价的:

①K是F的伽罗瓦扩张;
②K是F的有限可分正规扩张;
③K是可分多项式f®∈F[r|的分裂域.
且此时有|Gal(K/F)|=|K :F].
最后这个等式的左边表达的是“群中元素的个数”,右边表达的是“域的扩张次数”,在伽罗瓦扩张这一条件下,群和域的性质屠然可以统一在这样一个等式中.

把多项式的一个根放进去 x 3 − 5 ⇒ Q ( 5 3 ) x^3-5 \Rightarrow Q(\sqrt[3]{5}) x35Q(35 )
Q ( 5 3 ) ⊆ K ( 分 裂 域 ) Q(\sqrt[3]{5}) \subseteq K(分裂域) Q(35 )K()

3.伽罗瓦基本定理

定理(伽罗瓦基本定理)设K 是域F的伽罗瓦扩张,记Gal (K/F)为G,
记R是G的所有 子群 的集合,
记S是域K与F间的所有 中间域 的集合,
则有
1)定义S到R的映射
Gal: E→Gal(K/E), \forall E∈S,
称之为
伽罗瓦映射,则伽罗瓦映射是可逆映射,其逆映射为R到S的映射
Inv; H→InvH, VH∈R

  1. VH1,H2∈R,有
    H 2 ⊂ H 1 ⇔ I n v H 2 ⊂ I n v H 1 H2\subset H1\Leftrightarrow InvH2\subset Inv H1 H2H1InvH2InvH1

  2. VH1,H2∈,H2C H1,则有
    [H1: H2]=[nvH2: InvH1].

  3. VHI,H2∈R,H2C H1,则有

H 2 ◃ H 1 ⇔ H 2 是 H 1 的 正 规 扩 张 H2\triangleleft H1 \Leftrightarrow H2是H1的正规扩张 H2H1H2H1
且 此 时 G a l ( I n v H 2 / I n v H 1 ) ≃ H 1 / H 2. 同 构 且此时Gal (Inv H2/Inv H1)\simeq H1/H2.同构 Gal(InvH2/InvH1)H1/H2.
为了帮助读者理解伽罗瓦基本定理,我们做如下解释:
伽罗瓦映射(子群到不变子域的映射)及其逆映射,是本定理的核心内容.子
群集合R与中间域集合S之间建立了一一对应,在这里插入图片描述

(可分扩张:一个代数扩张L/K是可分扩张,当且仅当对L中任一给定元素α,α在K上的极小多项式没有重根。)
(正规扩张:域F上的某不可约多项式,在K上存在一个根,那么在K上存在所有根)
(有限扩张是正规扩张,当扩张是某个多项式的分裂域)
可分扩展很明显不一定是正规扩张:比如Q[x]/(x³-2)是可分扩张,但不是正规扩张。
不可分扩张,只要极小多项式有重根就是不可分扩张啦。
可分扩张的充要条件是(f(x),f’(x))=1。正规扩张一定是基域的某个分裂域。

参考:https://tieba.baidu.com/p/3668618341

罗瓦理论是一种独特且深奥的数学理论,起源于19世纪初法国数学家罗瓦的研究成果。这一理论主要研究代数方程在进行变换时的性质和限制。 这本书《罗瓦理论:天才的激情》是对罗瓦理论的系统性的介绍。书中深入浅出地解释了罗瓦理论的核心概念和关键思想。读者可以通过这本书了解到罗瓦理论的形成过程、研究内容以及应用领。 在书中,作者旨在向读者展示罗瓦理论为数学领带来的重大变革。罗瓦理论颠覆了传统代数方程的研究方法,引入了一种全新的思维方式。通过将方程的解与对称群相联系,罗瓦理论揭示了方程的可解性与对称性之间的关系。 罗瓦理论的重要性不仅仅体现在数学领,它也在物理学、密码学等其他领发挥着重要作用。通过深入理解罗瓦理论,我们能够更好地理解自然界中的各种现象和规律,并能够应用于实际问题的求解。 这本书的价值在于它提供了一个全面而系统的讨论罗瓦理论的平台。不仅仅适合具有数学背景的专业人士,也适合对数学感兴趣的非专业读者。通过阅读这本书,读者可以从中感受到罗瓦理论给数学领带来的重要而深远的影响,并有助于培养抽象思维和解决问题的能力。 总之,《罗瓦理论:天才的激情》是一本值得一读的数学著作。它向读者展示了数学的奥妙和美妙之处,深入浅出地解释了复杂的理论,使读者在享受数学乐趣的同时,提高自身的数学素养。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值