蒙特卡洛1000个风光场景并通过削减法聚类法得到几个典型场景附matlab&python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

风光资源作为一种重要的可再生能源,其开发与利用对于构建低碳、可持续的能源系统至关重要。然而,风能和太阳能的波动性和不确定性给电力系统的规划、运行和控制带来了显著挑战。准确刻画和预测风电和光伏发电出力特性,特别是其时空相关性和波动性,是解决这些挑战的关键。在风光场景分析中,识别具有代表性的典型场景,不仅有助于简化复杂的时序数据,还能有效评估系统在不同运行条件下的性能,例如电网的稳定性和储能系统的配置需求。

本文旨在探讨如何利用蒙特卡洛模拟生成大量的风光场景,并结合削减法聚类技术,从这些海量数据中提取出具有统计学意义的典型场景。通过深入分析这一方法论的理论基础、实现步骤以及潜在优势,为风光资源的高效利用和电力系统的可靠运行提供技术支持。

蒙特卡洛模拟在风光场景生成中的应用

蒙特卡洛方法是一种基于概率统计理论的计算方法,通过重复随机抽样来解决问题。其核心思想是利用随机过程的统计特性来近似待求量的真值。在风光场景生成中,蒙特卡洛模拟通过对风速、辐照度等关键气象参数的随机抽样和建模,生成大量可能的风电和光伏发电出力序列,从而构建丰富的风光场景集。

生成风光场景的流程通常包括以下几个步骤:

  1. 数据收集与预处理:

     收集历史风速、风向、温度、辐照度等气象数据,以及风电场和光伏电站的实际出力数据。对数据进行清洗、校验和标准化处理,以消除异常值和提高数据质量。

  2. 概率模型构建:

     基于历史数据,建立反映风速、辐照度等气象参数概率分布的统计模型。常用的模型包括Weibull分布、Rayleigh分布、Beta分布等。此外,还需要考虑不同气象参数之间的相关性,例如风速和风向、辐照度和云量等。对于风电场和光伏电站出力,可以建立基于气象参数的出力模型,例如风力机的功率曲线、光伏面板的效率模型等。

  3. 随机抽样与序列生成:

     利用建立的概率模型,通过蒙特卡洛模拟方法对未来的气象参数进行随机抽样。基于抽样得到的气象参数,利用出力模型生成相应的风电和光伏发电出力序列。为了捕捉时序相关性,可以使用时间序列模型,例如自回归积分滑动平均模型 (ARIMA)、马尔可夫链等,来模拟气象参数和出力的演变。

  4. 场景生成:

     将生成的气象参数序列和出力序列组合起来,构成一个完整的风光场景。通过重复进行随机抽样和序列生成,可以得到大量的风光场景。本文设定生成1000个风光场景,旨在通过足够大的样本空间来捕捉风光出力的各种可能情况。

蒙特卡洛模拟的优势在于能够生成符合实际概率分布的场景,捕捉风光出力的随机性和不确定性。通过生成大量的场景,可以全面地反映风光资源的波动特性,为后续的分析和决策提供更可靠的基础。然而,生成的海量场景数据也带来了处理和分析的挑战,需要进一步的手段来提炼关键信息。

削减法聚类在典型场景提取中的应用

生成1000个风光场景虽然能够全面反映风光资源的特性,但其庞大的数据量不利于后续的分析和应用。为了从这些海量场景中提取具有代表性的典型场景,可以使用聚类分析方法。聚类分析是一种无监督学习技术,旨在将数据集中的对象分组,使得同一组内的对象相似度较高,而不同组之间的对象相似度较低。

在风光场景分析中,聚类分析可以将具有相似出力特性的场景归为一类,每一类代表一种典型的运行情况。常用的聚类算法包括K均值聚类、层次聚类、DBSCAN等。然而,对于大规模数据集,传统的聚类算法可能面临计算效率和聚类效果的挑战。

本文采用削减法聚类(Reduction-based Clustering)的思想来提取典型场景。削减法聚类并非一种具体的算法,而是一种将数据维度或规模进行“削减”后再进行聚类的方法。其核心思想是先对数据进行某种形式的降维或子集选择,然后再应用聚类算法。这种方法在处理大规模、高维数据时具有一定的优势。

在本文语境下,将削减法应用于风光场景聚类,可以理解为以下两种可能的实现方式:

  1. 特征提取与降维后的聚类:

     首先,对每个风光场景的出力序列进行特征提取。例如,可以提取每个场景的平均出力、最大出力、最小出力、出力波动幅度、连续高/低出力时长等特征。这些特征可以作为场景的代表向量。然后,利用主成分分析 (PCA)、t-SNE等降维技术,将高维的特征向量映射到低维空间。最后,在降维后的空间中应用聚类算法(如K均值)对场景进行聚类。这种方法将每个场景压缩成一个低维向量,从而降低了聚类算法的计算复杂度,并有助于发现场景之间更深层次的相似性。

  2. 基于代表性场景选择的迭代聚类:

     另一种削减法的思路是迭代地选择具有代表性的场景,并以此为基础进行聚类。例如,可以先随机选择少量场景作为初始聚类中心,然后根据这些中心将其他场景分配到最近的聚类。接着,计算每个聚类的均值或中位数作为新的聚类中心,重复迭代直到聚类中心收敛。在每次迭代过程中,可以通过某种准则(例如聚类内部方差、轮廓系数等)来评估聚类效果,并可能对聚类中心或聚类数量进行调整。这种方法通过选择和更新具有代表性的场景来驱动聚类过程,从而达到“削减”数据量或计算量的目的。

具体的削减法聚类实现需要根据风光场景数据的特性和所需的典型场景数量进行选择和调整。无论采用哪种方式,其目标都是从1000个风光场景中高效地识别出少数几个(例如5-10个)具有代表性的典型场景。确定最终的典型场景数量是一个关键问题,通常需要综合考虑实际应用需求、聚类效果评估指标(如轮廓系数、Davies-Bouldin指数等)以及领域专家的经验。

从1000个场景中得到“几个”典型场景的聚类过程可以概括为:

  1. 数据表示:

     将每个风光场景表示为可以进行相似性度量的对象。例如,可以将每个场景的风电出力序列和光伏出力序列拼接起来,形成一个高维向量。或者提取关键特征作为场景的代表。

  2. 相似性度量:

     定义场景之间的相似性度量或距离度量。常用的距离度量包括欧氏距离、动态时间规整 (DTW) 等。动态时间规整特别适用于时间序列的相似性比较,可以应对时间序列在时间轴上的伸缩和偏移。

  3. 聚类算法应用:

     应用选定的削减法聚类算法对场景进行聚类。

  4. 聚类结果评估与典型场景选择:

     评估聚类结果的质量,例如聚类内部的紧密度和聚类之间的分离度。从每个聚类中选择最具代表性的场景作为典型场景。代表性场景可以是聚类中心、离聚类中心最近的场景,或者聚类中出现频率最高的模式。

通过削减法聚类,可以将1000个风光场景压缩为几个具有统计意义和物理意义的典型场景。这些典型场景能够捕捉风光出力在不同运行状态下的主要特征,例如晴朗无风的高出力场景、多云弱风的低出力场景、以及出力快速波动的场景等。

典型场景的应用与价值

通过蒙特卡洛模拟生成海量风光场景并结合削减法聚类提取典型场景,具有重要的理论和实际应用价值。

  1. 电力系统规划与可靠性评估:

     典型风光场景可以用于评估电力系统在极端运行条件下的稳定性和可靠性。例如,可以利用典型场景进行电力系统的潮流计算、暂态稳定性分析和静态安全分析,以识别潜在的薄弱环节并优化系统设计。同时,典型场景也为规划备用容量、储能系统和需求响应等灵活资源提供了重要依据。

  2. 电力市场运行与调度优化:

     在电力市场中,准确预测风光出力是制定最优调度计划和降低运营成本的关键。利用典型场景可以模拟不同风光条件下的市场运行情况,评估不同交易策略的风险和收益,优化发电机组组合和电网调度。

  3. 储能系统配置与运行策略优化:

     储能系统是应对风光出力波动的重要手段。利用典型场景可以评估不同容量和功率的储能系统在平抑出力波动、提高系统可靠性等方面的效果。同时,也可以优化储能系统的充放电策略,最大化其经济效益和技术效益。

  4. 风险评估与不确定性分析:

     典型风光场景能够捕捉风光出力的主要不确定性模式。利用这些典型场景,可以进行电力系统的风险评估,例如评估系统在面临极端天气事件或设备故障时的风险水平。

  5. 教学与研究:

     典型风光场景可以作为教学和研究的案例,帮助学生和研究人员更好地理解风光出力的特性及其对电力系统的影响。

结论

本文详细探讨了利用蒙特卡洛模拟生成大量风光场景并通过削减法聚类提取典型场景的方法。通过蒙特卡洛模拟,可以生成符合实际概率分布的1000个风光场景,全面反映风光出力的随机性和不确定性。接着,利用削减法聚类技术,可以从这些海量场景中高效地识别出具有统计学意义和物理意义的几个典型场景。

这种方法为风光资源的高效利用和电力系统的可靠运行提供了强有力的技术支撑。通过对典型场景的深入分析,可以更好地理解风光出力的特性,评估系统在不同运行条件下的性能,优化电力系统的规划、运行和控制策略。未来的研究可以进一步探索更先进的蒙特卡洛模拟技术,例如考虑更复杂的时空相关性和极端事件;同时,可以研究更有效的削减法聚类算法,以提高典型场景提取的准确性和效率。此外,将典型场景与具体的电力系统模型相结合,开展更深入的系统性能评估和优化研究,也将是重要的研究方向。

⛳️ 运行结果

图片

图片

图片

图片

图片

🔗 参考文献

[1] 高炜.滚磨光整加工数据库平台研发及工艺方案决策方法研究[D].太原理工大学[2025-05-18].

[2] 崔顺艳.SDR接收前端性能分析评测系统设计与实现[D].华中科技大学[2025-05-18].DOI:CNKI:CDMD:2.1016.920474.

[3] 季怿.基于聚类技术的盲均衡算法研究[D].南京信息工程大学,2014.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值