✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
柴油机作为重要的动力设备,其可靠运行至关重要。随着对设备状态监测和故障诊断的需求不断提升,基于深度学习的故障诊断方法近年来备受关注。本文提出了一种基于Transformer-GRU模型的柴油机故障诊断方法,该方法利用Transformer的全局特征提取能力和GRU的时序建模能力,有效地识别柴油机不同运行状态下的故障模式。通过对柴油机振动信号进行分析,构建数据集并训练模型,实验证明该方法能够有效识别柴油机常见的故障类型,并具有较高的识别精度。
关键词:柴油机,故障诊断,Transformer,GRU,深度学习
1. 引言
柴油机作为工业生产、交通运输和国防建设的重要动力源,其可靠运行至关重要。柴油机故障会导致生产效率下降、经济损失、安全隐患甚至环境污染。传统的柴油机故障诊断方法通常依赖人工经验,存在效率低下、诊断精度不高、对专业人员依赖性强等弊端。随着深度学习技术的发展,基于深度学习的故障诊断方法逐渐成为研究热点,并取得了显著成果。
深度学习方法能够从大量数据中自动提取特征,并进行准确的分类和预测,为解决柴油机故障诊断问题提供了新的思路。然而,传统的深度学习模型如循环神经网络(RNN)和卷积神经网络(CNN)在处理时序数据时存在局限性。例如,RNN容易受到梯度消失或爆炸的影响,而CNN则难以捕捉长程依赖关系。
为了克服这些局限性,本文提出了一种基于Transformer-GRU的柴油机故障诊断方法。Transformer是一种基于注意力机制的深度学习模型,它能够捕获输入序列中不同元素之间的全局依赖关系,并在机器翻译、自然语言处理等领域取得了巨大成功。GRU是一种特殊的RNN模型,它能够有效地处理时序数据,并减少RNN模型中梯度消失或爆炸的问题。通过将Transformer和GRU结合,可以充分发挥两种模型的优势,构建一种更有效的柴油机故障诊断模型。
2. 模型架构
该模型主要包含以下三个部分:
-
数据预处理: 将采集到的柴油机振动信号进行预处理,包括降噪、特征提取等,将其转化为模型可接受的输入数据。
-
Transformer模块: 该模块利用多头注意力机制,捕捉柴油机振动信号中的全局特征,并将其编码为高维特征向量。
-
GRU模块: 该模块接收Transformer模块输出的特征向量,并利用GRU的时序建模能力,对不同时间步的特征进行建模,最终输出故障诊断结果。
3. 数据集与实验设置
为了验证模型的有效性,本文使用某型柴油机在不同运行状态下的振动信号构建数据集。数据集包含正常状态、轴承故障、气门故障和燃油系统故障等不同故障模式。为了提高模型的鲁棒性,对数据集进行随机划分,将80%的数据用于训练,20%的数据用于测试。
本文提出的Transformer-GRU模型在诊断精度上明显优于其他方法,表明该模型能够有效地识别柴油机不同运行状态下的故障模式。
5. 结论
本文提出了一种基于Transformer-GRU模型的柴油机故障诊断方法,该方法有效地融合了Transformer的全局特征提取能力和GRU的时序建模能力,在柴油机故障诊断任务中取得了较高的诊断精度。该方法为柴油机故障诊断提供了一种新的思路,具有重要的理论和实际应用价值。
⛳️ 运行结果
📣 部分代码
%% 数据分析
num_size = 0.8; % 训练集占数据集比例
outdim = 2; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
🔗 参考文献
[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].
[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类