✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
1. 问题建模
2. 人工兔算法原理
- 基本概念
:人工兔算法模拟兔子在环境中寻找食物(目标点)的行为。每个 “人工兔” 代表一个路径规划方案,通过不断调整自身的位置(路径点)来优化目标函数。
- 位置更新规则
:人工兔根据自身的 “记忆”(历史最优位置)和环境信息(如其他人工兔的位置和目标点的位置)来更新自己的位置。例如,人工兔可能会朝着目标点和其他优秀人工兔的方向移动,同时考虑路径上的约束条件(如避开障碍物、威胁区域等)。
- 算法流程
:
-
初始化人工兔的位置(初始路径规划方案),并计算每个人工兔的目标函数值。
-
人工兔根据位置更新规则调整自己的位置,生成新的路径规划方案,并计算新的目标函数值。
-
记录每个人工兔的历史最优位置和全局最优位置(所有人工兔中的最优路径规划方案)。
-
重复步骤 2 和步骤 3,直到满足终止条件(如达到最大迭代次数或目标函数值收敛)。
-
3. 三维路径规划具体实现
- 环境建模
:建立包含障碍物、威胁源(如敌方防空区域)和目标点的三维环境模型。可以使用栅格地图或八叉树等数据结构来表示环境,每个栅格或节点可存储相关信息(如是否为障碍物、威胁程度等)。
- 路径表示
:无人机的路径可以用一系列三维空间中的路径点表示。人工兔的位置即这些路径点的组合,通过调整路径点的坐标来优化路径。
- 约束处理
:在路径规划过程中,需要考虑无人机的飞行约束,如最大飞行速度、最大转角速率、最小安全距离等。对于环境中的障碍物和威胁源,人工兔在更新位置时应避免进入这些区域,可通过设置惩罚项或限制位置更新范围来实现。
4. 实验与结果分析
- 实验设置
:在模拟的三维环境中进行实验,设置不同的障碍物分布、威胁源位置和目标点位置。调整目标函数中的权重系数,观察人工兔算法在不同权重下的路径规划结果。
- 性能指标
:使用路径长度、目标函数值、是否避开威胁源和障碍物等指标来评估路径规划的性能。比较人工兔算法与其他路径规划算法(如 A * 算法、RRT 算法等)的性能,分析人工兔算法的优势和局限性。
- 结果分析
:分析实验结果,探讨不同因素(如环境复杂度、权重系数)对路径规划结果的影响。例如,在威胁程度较高的环境中,算法应能够生成更安全的路径;当路径长度权重较大时,生成的路径应更短。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇