作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
准确的负荷预测是电力系统安全稳定运行、经济高效调度的关键基础。然而,电力负荷受到多种复杂因素影响,呈现出非线性、非平稳和随机性的特征,传统预测方法难以有效捕捉其内在规律。近年来,深度学习技术在处理复杂时序数据方面展现出强大潜力。本文提出一种基于变分模态分解(Variational Mode Decomposition, VMD)、卷积神经网络(Convolutional Neural Network, CNN)和双向门控循环单元(Bi-directional Gated Recurrent Unit, BiGRU)的组合预测模型(VMD-CNN-BiGRU)用于电力负荷预测。该模型首先利用VMD对原始负荷序列进行分解,得到一系列具有不同频率特性的相对平稳的子序列;然后,针对每个子序列,构建基于CNN和BiGRU的混合网络模型,其中CNN用于提取序列的局部特征,BiGRU用于捕捉序列的长短期依赖关系;最后,将所有子序列的预测结果进行叠加重构,得到最终的负荷预测值。通过与其他单一模型和组合模型的对比实验表明,本文提出的VMD-CNN-BiGRU模型能够显著提高负荷预测的精度和稳定性,为电力系统的预测与决策提供更可靠的支持。
关键词: 负荷预测;变分模态分解;卷积神经网络;双向门控循环单元;深度学习;组合模型
1. 引言
电力负荷作为电力系统运行的终端表现,其准确预测对于电力系统规划、运行调度、市场交易、风险管理等方面都至关重要。短时负荷预测(Short-Term Load Forecasting, STLF)通常指对未来数小时至数天的负荷进行预测,其精度直接影响电力系统备用容量的确定、机组启停计划的制定以及电力市场的出清。长期负荷预测则服务于电力系统的长期规划和投资决策。然而,实际电力负荷序列受到气象条件(如温度、湿度、风速等)、日期类型(工作日、周末、节假日)、经济活动、政策调整等多种因素的综合影响,呈现出高度的非线性和非平稳性。尤其是在新能源大量接入、负荷侧多样化发展的背景下,负荷波动的复杂性进一步增加,给传统的统计预测方法带来了严峻挑战。
传统的负荷预测方法主要包括统计方法和机器学习方法。统计方法如时间序列分析(ARIMA、SARIMA)、回归分析等,通常要求数据具有一定的线性或平稳特性,对于非线性和非平稳的电力负荷序列,其预测效果往往不理想。机器学习方法如支持向量机(SVM)、神经网络(BPNN、ELM等)等,虽然具有一定的非线性建模能力,但对于具有复杂时序依赖关系的长序列数据,其性能提升受到限制。
近年来,随着计算能力的提升和大数据技术的发展,深度学习在时序数据处理领域取得了显著进展。循环神经网络(Recurrent Neural Network, RNN)及其变种如长短期记忆网络(LSTM)和门控循环单元(GRU)因其对时序依赖关系的强大捕捉能力而被广泛应用于负荷预测。然而,传统的RNN模型存在梯度消失或爆炸的问题,且GRU或LSTM虽然在一定程度上缓解了这些问题,但单向的网络结构难以充分利用历史和未来(预测时刻之后)的信息。卷积神经网络(CNN)在图像处理领域表现出色,但其在时序预测中的应用也逐渐受到关注,CNN可以通过滑动卷积核的方式提取序列的局部特征,例如周期性模式或突变。
针对电力负荷序列的非平稳性问题,采用分解方法将复杂的原始序列分解为若干相对简单的子序列是一种有效的策略。经验模态分解(Empirical Mode Decomposition, EMD)及其改进方法(如EEMD、CEEMDAN等)被广泛应用于负荷预测的预处理阶段。然而,EMD方法存在模态混叠等问题。变分模态分解(VMD)是一种新型的信号分解方法,具有坚实的数学基础,能够自适应地将原始信号分解为预设数量的本征模态函数(Intrinsic Mode Functions, IMFs),具有更好的分解性能和抗噪能力。
鉴于电力负荷的复杂特性和现有方法的局限性,本文提出一种基于VMD-CNN-BiGRU的组合预测模型。该模型首先利用VMD对原始负荷序列进行分解,降低数据的非平稳性;然后,针对分解得到的每个子序列,构建基于CNN和BiGRU的混合网络模型,充分结合CNN的局部特征提取能力和BiGRU的双向时序依赖捕捉能力;最后,将各子序列的预测结果进行叠加重构,得到最终的负荷预测结果。通过这种组合策略,旨在提高负荷预测的精度和鲁棒性。
本文的组织结构如下:第二节介绍本文所使用的核心方法,包括VMD、CNN和BiGRU;第三节详细阐述基于VMD-CNN-BiGRU的负荷预测模型结构;第四节通过实验验证所提出模型的有效性,并与对比模型进行性能比较;第五节对全文进行总结,并展望未来的研究方向。
2. 相关方法介绍
2.1 变分模态分解 (VMD)
变分模态分解(VMD)是由Dragomiretskiy和Zosso于2014年提出的一种自适应信号分解方法。与EMD等递归分解方法不同,VMD是一种完全非递归的变分模型,它将信号分解过程转化为变分问题的求解。VMD的目标是寻找一组本征模态函数(IMFs),使得每个IMF的带宽最小,并且所有IMF的和能够重构原始信号。其核心思想是构建并求解一个变分优化问题。
VMD的优势在于其具有坚实的理论基础,能够有效地抑制模态混叠,并且对噪声具有一定的鲁棒性。通过VMD分解,可以将复杂的非平稳负荷序列转化为一系列具有不同频率尺度的相对平稳的子序列,从而降低后续建模的难度。VMD分解的模态数 KK 是一个需要事先设定的参数,通常根据经验或通过信息准则(如包络熵)来确定。
2.2 卷积神经网络 (CNN)
卷积神经网络(CNN)是一种前馈神经网络,最初主要应用于图像处理领域,但在处理时序数据方面也展现出其独特的优势。CNN通过卷积层、池化层和全连接层等结构,能够有效地提取数据的局部特征。
对于一维时序数据,卷积层通过滑动不同大小的卷积核在输入序列上进行卷积操作,提取序列的局部模式或特征。例如,使用一个大小为3的卷积核可以在序列中捕捉到相邻三个数据点之间的关系。通过设置不同的卷积核数量和大小,可以提取不同层次和尺度的局部特征。卷积操作后通常会经过激活函数(如ReLU)增加网络的非线性能力。
池化层(如最大池化或平均池化)用于对卷积层的输出进行降采样,减少特征图的维度,同时保留重要的特征信息,降低计算复杂度并提高模型的泛化能力。对于时序数据,池化操作可以在时间维度上进行,例如,对一定长度的时间窗口内的特征进行最大值或平均值提取。
通过多层卷积层和池化层的堆叠,CNN能够逐步提取出更抽象和高级的局部特征。最后,通常会将经过卷积和池化处理的特征图展平,输入到全连接层进行最终的预测或分类。
在负荷预测中,CNN可以用于捕捉负荷序列中的局部变化模式,例如日内波动、周内模式等。通过卷积核的滑动,可以自动学习到这些局部特征的有效表示。
2.3 双向门控循环单元 (BiGRU)
循环神经网络(RNN)通过引入循环连接,使得网络具有记忆能力,能够处理时序数据。然而,标准的RNN存在梯度消失或爆炸的问题。长短期记忆网络(LSTM)和门控循环单元(GRU)通过引入门控机制(输入门、遗忘门、输出门等)有效地解决了这些问题,能够更好地捕捉长距离的时序依赖关系。
门控循环单元(GRU)是LSTM的一种简化版本,它将遗忘门和输入门合并为更新门,并将单元状态和隐状态合并,参数数量少于LSTM,计算效率更高,且在许多任务上表现与LSTM相当。GRU的主要结构包括更新门(Update Gate)和重置门(Reset Gate)。
BiGRU是GRU的一种扩展形式,它由两个独立的GRU层组成,一个处理正向序列(从过去到未来),另一个处理反向序列(从未来到过去)。这两个GRU层的隐状态最终会被合并(例如,通过拼接或求和)作为BiGRU层的输出。这种双向结构使得BiGRU能够同时利用历史和未来(对于预测任务,这里的“未来”是指预测时刻之后但与当前时刻相关的上下文信息,例如预测点的下一个时刻的负荷可能与当前时刻的负荷以及其未来的趋势有关)的信息来更新隐状态,从而更全面地捕捉序列的上下文依赖关系。
在负荷预测中,BiGRU可以用于捕捉负荷序列中的长短期依赖关系,例如前一天的负荷对今天负荷的影响、同类日期(工作日或周末)之间的相似性等。双向结构使得模型能够更好地理解当前时刻负荷与整个时间序列之间的关系。
3. 基于VMD-CNN-BiGRU的负荷预测模型
本文提出的基于VMD-CNN-BiGRU的负荷预测模型结构如图1所示。该模型主要包含三个阶段:数据预处理与分解、子序列建模与预测、以及结果重构。
图1. 基于VMD-CNN-BiGRU的负荷预测模型结构图
[此处应绘制一个流程图,展示模型的三个主要阶段和各模块之间的连接。
第一阶段:输入原始负荷序列 -> VMD分解 -> 得到K个IMF子序列
第二阶段:对于每个IMF子序列 i (i=1 to K):
将IMF i 作为输入 -> CNN层(特征提取)-> BiGRU层(时序建模)-> 全连接层 -> 得到IMF i 的预测值
第三阶段:将所有IMF子序列的预测值进行叠加 -> 得到最终负荷预测值
同时可以展示其他辅助步骤,如数据归一化、模型训练、模型评估等。]
3.1 数据预处理与分解
- 数据收集:
收集历史电力负荷数据,以及可能影响负荷的相关因素数据,例如气象数据(温度、湿度、风速)、日期信息(星期几、是否节假日)等。
- 数据清洗:
对缺失值、异常值等进行处理,例如采用插值法或删除法。
- 数据归一化:
为了提高模型的训练效率和稳定性,通常将数据进行归一化处理,例如使用最小-最大归一化或Z-score标准化。
- 变分模态分解 (VMD):
利用VMD算法对归一化后的原始负荷序列进行分解。分解的关键在于确定合适的模态数 KK 和惩罚系数 αα。模态数 KK 通常可以根据经验或通过计算包络熵等指标来选择,旨在使得每个IMF具有较好的单分量特性且包含不同的频率信息。惩罚系数 αα 控制着模态的带宽,较大的 αα 会导致模态带宽较窄。分解后得到 KK 个具有不同频率特性的本征模态函数(IMFs)子序列。此外,原始序列减去所有IMFs后可能存在残余分量(Residual, Res),该残余分量通常是单调的或具有较低频率的趋势,也可以单独进行预测。因此,分解后的结果包含 KK 个IMFs和一个Res子序列。
3.2 子序列建模与预测
对于VMD分解得到的 KK 个IMFs子序列和1个Res子序列(共 K+1K+1 个子序列),本文针对每个子序列构建独立的基于CNN-BiGRU的预测模型。构建过程如下:K+1个子序列),本文针对每个子序列构建独立的基于CNN-BiGRU的预测模型。构建过程如下:
-
构建训练集和测试集: 将每个子序列的数据按照时间顺序划分为训练集、验证集(可选)和测试集。通常采用滑动时间窗口的方式构建输入-输出对,即利用前 LL 个时刻的数据预测后 TT 个时刻的数据。
-
构建CNN-BiGRU模型: 对于每个子序列 ii(包括IMFs和Res),构建一个独立的CNN-BiGRU网络。该网络的结构如下:
- 输入层:
接收长度为 LL 的子序列数据。
- 一维卷积层 (Conv1D):
使用多个不同大小的卷积核对输入序列进行卷积,提取局部特征。例如,可以设置多个卷积核,每个卷积核大小不同,以捕捉不同时间尺度的局部模式。卷积后通常接ReLU激活函数。
- 池化层 (MaxPooling1D):
对卷积层的输出进行池化操作,减少特征维度,增强模型的鲁棒性。
- BiGRU层:
将经过CNN处理后的特征序列作为输入,利用BiGRU捕捉序列的双向长短期依赖关系。可以设置多层BiGRU,以提取更高级的时序特征。
- 全连接层 (Dense):
将BiGRU层的输出展平后输入到全连接层,进行最终的线性变换。
- 输出层:
输出预测值,对于单步预测,输出层包含1个神经元;对于多步预测,输出层包含 TT 个神经元。
- 输入层:
-
模型训练: 使用训练集对每个子序列的CNN-BiGRU模型进行训练。训练过程中选择合适的损失函数(如均方误差MSE)和优化器(如Adam)。通过反向传播算法更新网络参数,最小化预测误差。
3.3 结果重构
在每个子序列的模型训练完成后,利用测试集对每个子序列进行预测,得到每个子序列在测试集上的预测值。最后,将所有子序列在同一时间步的预测结果进行反归一化处理(如果进行了归一化),然后进行简单的求和叠加,得到最终的原始负荷序列的预测值。
f^(t)=∑k=1Ku^k(t)+r^(t)
通过这种“分解-预测-重构”的策略,本文提出的VMD-CNN-BiGRU模型能够分别处理原始负荷序列在不同频率尺度上的变化,从而提高整体预测性能。CNN-BiGRU混合网络在每个子序列上的应用则进一步增强了模型的特征提取和时序建模能力。
4. 实验验证与结果分析
为了验证本文提出的VMD-CNN-BiGRU模型的有效性,本节将使用实际电力负荷数据集进行实验,并与一些常用的预测模型进行对比。
4.1 数据集与实验设置
本实验采用一个真实的电力负荷数据集,数据采集频率为小时,包含了一年的历史负荷数据。数据集同时包含对应的气象信息(温度、湿度)以及日期信息(星期几)。将数据集按照时间顺序划分为训练集(前10个月的数据)、验证集(第11个月的数据)和测试集(最后一个月的数据)。
评价模型预测性能的指标采用常用的均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)。这些指标定义如下:
RMSE=1N∑i=1N(yi−y^i)2
4.2 VMD分解结果
在对原始负荷序列进行VMD分解时,需要确定模态数 KK。通过经验设置和多次实验尝试,并结合包络熵等指标的分析,最终确定将原始负荷序列分解为 K=5K=5 个IMF子序列和一个残余分量Res。分解后,原始负荷序列被分解为IMF1至IMF5以及Res,共6个子序列。IMF1通常代表高频波动,IMF随着序号的增加频率逐渐降低,Res则代表整体趋势或极低频分量。分解结果的示例如图2所示。
图2. 原始负荷序列及其VMD分解结果示例
[此处应展示原始负荷序列的时间序列图,以及分解得到的各个IMF子序列和Res子序列的时间序列图。]
从分解结果可以看出,原始负荷序列的复杂波动被分解为不同频率的相对简单的子序列,这为后续的独立建模和预测奠定了基础。
4.3 对比模型
为了全面评估本文提出模型的性能,选择以下几种代表性的模型进行对比:
- ARIMA模型:
经典的统计时间序列预测模型。
- BPNN模型:
传统的前馈神经网络模型。
- LSTM模型:
具有门控机制的循环神经网络,能够捕捉长短期依赖。
- BiGRU模型:
双向门控循环单元模型。
- VMD-LSTM模型:
结合VMD分解和LSTM模型的组合预测模型。
- VMD-BiGRU模型:
结合VMD分解和BiGRU模型的组合预测模型。
- CNN-BiGRU模型:
不进行分解,直接使用CNN-BiGRU模型对原始序列进行预测。
4. 结论与展望
本文提出一种基于VMD-CNN-BiGRU的组合预测模型用于电力负荷预测。该模型充分结合了VMD在非平稳信号分解方面的优势、CNN在局部特征提取方面的能力以及BiGRU在捕捉双向时序依赖方面的特点。实验结果表明,与传统的统计方法、单一深度学习模型以及其他组合模型相比,本文提出的VMD-CNN-BiGRU模型在预测精度和稳定性方面均表现出显著的优势,能够为电力系统的预测与决策提供更可靠的支持。
未来的研究方向可以包括:
- 优化VMD参数:
进一步研究自适应确定VMD分解模态数 KK 和惩罚系数 αα 的方法,避免人工设置的主观性。
- 考虑外部因素的影响:
将气象数据、日期类型等外部影响因素引入到CNN-BiGRU模型的输入中,提高模型的预测准确性。
- 多任务学习:
尝试将不同频率子序列的预测任务进行联合优化,利用子任务之间的相关性提高整体性能。
- 模型可解释性:
研究如何提高CNN-BiGRU模型的可解释性,理解模型对不同特征的敏感程度。
- 实时性优化:
进一步优化模型的计算效率,以满足电力系统实时负荷预测的需求。
- 应用于其他领域:
将本文提出的组合模型应用于其他类型的时序数据预测,例如股票价格预测、交通流量预测等。
⛳️ 运行结果
🔗 参考文献
[1] 张超,张菁,李洋帆.基于CEEMDAN-SE-VMD和CNN-BIGRU的短期负荷预测[J].电子器件, 2024, 47(3):849-857.
[2] 杨胡萍,余阳,汪超,等.基于VMD-CNN-BIGRU的电力系统短期负荷预测[J].中国电力, 2022, 55(10):71-76.
[3] 付波,聂兴宇,赵熙临,等.基于VMD-SE-PSO-BIGRU模型的水电机组振动趋势预测[J].水电能源科学, 2023, 41(12):178-181.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇