【通信】Matlab实现改进的多同步压缩变换

1 内容介绍

多重同步压缩变换简介

在分析一个客观物体时,采集它当前状态的信息,是了解其工作状况最好的方式。通过传感器,记录其信息,得到的就是信号(一般均为时域信号)。时频分析技术(TFA),通过加入频率变量,为我们分析时域信号,提供了更为全面的时频视角。但是,传统TFA是存在很多不足的。这里不再赘述。

相关文章谷歌搜索“Multi-synchrosqueezing Transform”即可。

 

目前,TFA的发展,是冲着两个目标。

 

一,时频谱具有高能量聚集性,直观地可以理解为高时频分辨率(也有些人,反对将聚集性等同为分辨率)。

 

二,信号能够被完美重构。(做到完美重构的话,可以使得该TFA技术用于信号去噪,模态分解等方面。)

 

传统TFA方法,比如,短时傅里叶变换(STFT),小波变换(WT),S变换等等,都是可以做到信号被完美重构的。但是,它们的能量聚集性特别差,时频谱发散严重。同步压缩变换(SST)的出现,就是在不影响信号重构性能的前提下,提高能量聚集性。但是,SST对噪声敏感,并且不适合处理强调频信号(遇到这两种情况,依然会发散严重)。上面的帖子中,介绍了一种叫同步提取变换(SET)的方法。相比于SST,时频聚集性,得到极大的提高。但是,SET不再能够完美重构信号了,只能做到近似重构。

 

这就有点尴尬了,难道上面两个目标,就不能同时达成吗?!接下来,介绍一种新提出的算法,Multi-synchrosqueezing Transform(MSST),多重同步压缩变换。MSST,既可以实现高能量聚集性,也可以完美重构信号。MSST是基于SST的一种技术,但是,脑洞却开的相当大。了解SST的同仁们应该知道,SST是基于STFT(或者WT)的一种后处理工具,从频率方向对STFT的结果进行压缩,从而提升时频谱的能量聚集性。此刻,大家心里还需要清楚一件事,只要是在频率方向对STFT结果进行的压缩,永远都可以对时域信号进行完美重构。虽然,SST不太适合处理强调频信号。但是,对强调频信号的STFT结果进行SST处理之后,时频谱依然要更加聚集一些。重点来了!那么,我们是不是可以对SST结果继续执行一次同步压缩操作?答案当然是可以的。再执行一次SST操作的结果是,时频谱会更加聚集。那么,继续执行下去,时频谱是不是会继续聚集下去?yes!通过这些idea的汇集,就提出了MSST算法。其原理,就是对时频谱执行多次同步压缩操作。由于多次压缩都是在频率方向进行的,因此,MSST是允许信号被完美重构的。

 

当然了,执行多次同步压缩,是会产生巨大的计算负担的,不利于实时计算。因此,之后文章中又给出了一种通过函数迭代的方式,极大地减少了计算负担,可以做到与SST相同的计算复杂度,实时性很好。

       MSST从构思上,从算法实现上,都非常的简单。但是,其深层的数学原理,却很深。接下来,给大家看一个蝙蝠信号的分析例子。其他的,可以从文章中看看。文章最后,也提供了所有的代码和数据。直接拖进MATLAB里就可以运行。

2 部分代码

clear;

close all

load('batdata2.mat');

SampFreq = 1000000/7;

n=length(data);

time=(1:n)/SampFreq;

fre=(SampFreq/2)/(n/2):(SampFreq/2)/(n/2):(SampFreq/2);

time=time*1000;

fre=fre/1000;

[Ts] = IMSST_Z(data,45,10);

%[Ts] = IMSST_Z(data);

figure;

imagesc(time,fre,abs(Ts));

xlabel('Time (s)');

ylabel('Fre (Hz)');

axis xy

3 运行结果

4 参考文献

[1]曹宏瑞, 周铖, 魏江,等. 一种基于改进同步压缩变换的扭振信号瞬时频率提取方法:. 

博主简介:擅长智能优化算法神经网络预测信号处理元胞自动机图像处理路径规划无人机雷达通信无线传感器等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值