2023美赛C题-Wordle预测思路及matlab代码

本文介绍了基于Matlab对Wordle游戏结果的分析,包括建立预测模型以解释结果数量的变化,研究单词属性对硬模式分数的影响,并预测未来日期的解决方案分布。此外,还探讨了如何按难度对解决方案词进行分类,以及数据集中其他有趣的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

​✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测      

### 2023C第二问MATLAB示例代码 针对2023国大学生数学建模竞C第二问,该问主要围绕字符串数据处理展开。为了有效解决这一问,下面提供一段用于分析和预测Wordle游戏结果的MATLAB代码示例。 #### 数据预处理 首先读取并清理输入的数据集,确保其适合后续分析: ```matlab % 加载原始数据文件 data = readtable('input_data.csv'); % 清洗数据:移除缺失值或异常记录 cleanedData = rmmissing(data); ``` #### 特征提取与转换 接着从清洗后的数据集中抽取有用特征,并将其转化为数值形式以便于进一步操作: ```matlab % 提取单词长度作为新列加入表格 wordLengths = cellfun(@length, cleanedData.WordColumn); cleanedData.WordLength = wordLengths; % 对字母频率进行统计 letterFreqTable = varfun(@(x)sum(x), ... table(categorical(lower(cleanedData{:,'WordColumn'}'))', 'VariableNames',{'Letters'})... , 'InputVariables', @iscategory); % 添加到原表中 for i=1:height(letterFreqTable) columnName = char(letterFreqTable.Properties.RowNames{i}); cleanedData.(sprintf('Letter_%c_Count', columnName)) = letterFreqTable{i, :}; end ``` #### 构建预测模型 基于上述准备好的训练集来训练分类器或其他类型的预测模型: ```matlab % 划分训练测试集合 cv = cvpartition(height(cleanedData),'HoldOut',0.3); trainingSet = cleanedData(training(cv,:), :); testingSet = cleanedData(testing(cv,:), :); % 定义响应变量(例如是否为常见词) responseVarName = 'IsCommon'; % 假设存在这样一个布尔型字段表示词语频度高低 % 创建决策树分类器实例 treeModel = fitctree(trainingSet(:, setdiff({cleanedData.Properties.VariableNames}, responseVarName)), trainingSet.(responseVarName)); % 应用模型评估性能指标 predictedLabels = predict(treeModel, testingSet(:, setdiff({cleanedData.Properties.VariableNames}, responseVarName))); confusionMatrixDisplay = confusionchart([testingSet.(responseVarName)', predictedLabels']); accuracyRate = sum(diag(confusionMatrixDisplay.NormalizedValues)); fprintf('Accuracy rate on test data is %.2f%%.\n', accuracyRate * 100); ``` 以上展示了如何利用MATLAB完成一次完整的数据分析流程——从加载初始数据直至建立简单的监督学习模型来进行某些特定属性的预测[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值