✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
基于模糊控制的水位控制是一种常用的控制方法,可以通过模糊逻辑来实现对水位的自动调节。下面是基于模糊控制实现水位控制的基本步骤:
-
系统建模:首先需要对水位控制系统进行建模,包括确定输入变量和输出变量。例如,输入变量可以是水泵的开启程度,输出变量可以是水位的高低。同时,还需考虑到系统的特性和约束条件。
-
设计模糊控制器:根据系统建模的结果,设计模糊控制器的结构和规则。模糊控制器一般包括模糊化、模糊推理和解模糊化三个部分。
-
模糊化:将实际的输入变量(如水位误差)转化为模糊集合,可以使用隶属度函数来描述不同程度的归属度。
-
模糊推理:基于设定的规则和输入变量的模糊集合,进行推理并生成模糊输出。常见的推理方法包括最小最大(min-max)法、加权平均法等。
-
解模糊化:将模糊输出转化为具体的控制信号。可以使用反模糊化方法,如去模糊化加权平均法、去模糊化中心平均法等。
-
-
系统仿真与优化:使用设计好的模糊控制器进行系统仿真,观察系统响应情况,并根据实际需求进行调整和优化。
-
实时控制:将优化后的模糊控制器应用于实际系统中,实时监测水位并根据控制策略调整水泵的开启程度,实现水位的稳定控制。
需要注意的是,模糊控制具有灵活性和鲁棒性,适用于复杂的非线性系统。但在设计模糊控制器时,需要考虑到系统的动态特性、模糊规则的合理性和调整参数等因素,以获得良好的控制效果。此外,模糊控制器还可以与其他控制方法相结合,如PID控制器,以进一步提高系统的性能和稳定性。
⛄ 部分代码
%水位模糊控制算法
clear all;
close all;
num=2;
den=[5,1];
umax=0.01;
N=3000;
sys=tf(num,den);
a = newfis('fuzzy tank');%创建并返回一个新的FIS系统
%将偏差e划分为5个模糊集,负大(NB)、负小(NS)、零(ZO)、正小(PS)、正大(PB),e为负表示当前水位低于目标水位,e为正表示当前水位高于目标水位。
a = addvar(a,'input','e',[-3,3]);%向模糊推理系统中添加语言变量
a = addmf(a,'input',1,'NB','zmf',[-3,-1]);%向模糊推理系统的语言变量添加隶属度函数
a =addmf(a,'input',1,'NS','trimf',[-3,-1,1]);%a为模糊推理系统对应的矩阵变量名
a =addmf(a,'input',1,'ZO','trimf',[-2,0,2]);%“input”指定语言变量类型的字符串
a =addmf(a,'input',1,'PS','trimf',[-1,1,3]);%“1”指定语言变量编号的数字
a = addmf(a,'input',1,'PB','smf',[1,3]);%“PB”指定隶属度函数的名称;“smf”指定隶属度函数类型;“[1,3]”指定隶属度函数的参数
%同样将控制量u划分为5个模糊集,负大(NB)、负小(NS)、零(ZO)、正小(PS)、正大(PB),u为负表示增大进水阀门S1的开度(同时减小出水阀门S2的开度),u为正表示减小进水阀门S1的开度(同时增大出水阀门S2的开度)。
a = addvar(a,'output','u',[-4,4]);
a = addmf(a,'output',1,'NB','zmf',[-4,-2]);
a =addmf(a,'output',1,'NS','trimf',[-4,-2,0]);
a =addmf(a,'output',1,'ZO','trimf',[-2,0,2]);
a =addmf(a,'output',1,'PS','trimf',[0,2,4]);
a = addmf(a,'output',1,'PB','smf',[2,4]);
%建立模糊规则
rulelist=[1 1 1 1;
2 2 1 1;
3 3 1 1;
4 4 1 1;
5 5 1 1];
a = addrule(a,rulelist);
figure(1);
plot(kk,yy,'r');
⛄ 运行结果
⛄ 参考文献
[1] 王卓,付冬梅,刘德军.锅炉汽包水位控制系统的研究[J].自动化仪表, 2006, 27(11):3.DOI:10.3969/j.issn.1000-0380.2006.11.016.
[2] 孙勇智,于海蓉.基于组态软件和MATLAB的水位模糊控制系统[J].浙江科技学院学报, 2007, 19(1):4.DOI:10.3969/j.issn.1671-8798.2007.01.005.
[3] 王劲松,朱会东,杨伟红.基于Matlab的锅炉水位模糊控制[J].机械与电子, 2008(12):4.
[4] 李中宁.基于MATLAB的锅炉水位模糊控制系统的设计和分析[D].长春理工大学,2008.DOI:10.7666/d.y1242344.
⛳️ 代码获取关注我
❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料
🍅 仿真咨询
1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长