【CNN时序预测】基于卷积神经网络的时间序列预测附matlab完整代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

基于卷积神经网络(CNN)的时间序列预测是一种使用CNN模型来处理时间序列数据并进行预测的方法。相比于传统的基于循环神经网络(RNN)的方法,CNN在处理时间序列数据时具有一些独特的优势。

以下是基于CNN的时间序列预测的基本步骤:

  1. 数据准备:将时间序列数据集分为训练集和测试集。训练集用于训练CNN模型,测试集用于评估模型的预测性能。

  2. 数据转换:由于CNN是基于图像处理的模型,需要将时间序列数据转换为二维图像数据。常用的方法有滑动窗口法和傅里叶变换法等。

  3. CNN模型构建:构建一个包含卷积层、池化层和全连接层的CNN模型。卷积层用于提取时间序列数据中的特征,池化层用于降低特征维度,全连接层用于输出预测结果。

  4. 模型训练:使用训练集对CNN模型进行训练。通过反向传播算法更新模型的权重和偏置,以最小化预测误差。

  5. 模型预测:使用训练好的CNN模型对测试集进行预测。输入测试集的图像数据,通过前向传播算法得到预测结果。

  6. 模型评估:使用预测结果与测试集的真实值进行比较,计算预测误差、均方根误差等指标,评估模型的预测性能。

需要注意的是,基于CNN的时间序列预测方法可以利用CNN对时间序列数据的局部特征进行提取,并具有良好的并行性和可解释性。然而,在实际应用中,需要根据问题的复杂性和数据的特点来选择合适的CNN模型结构和参数设置,以获得更好的预测效果。同时,还可以结合其他技术和方法,如自注意力机制(self-attention)、残差网络(residual network)等,进一步提升预测性能。

⛄ 代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据(时间序列的单列数据)result = xlsread('数据集.xlsx');%%  数据分析num_samples = length(result);  % 样本个数 kim = 15;                      % 延时步长(kim个历史数据作为自变量)zim =  1;                      % 跨zim个时间点进行预测%%  划分数据集for i = 1: num_samples - kim - zim + 1    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];end%%  划分训练集和测试集temp = 1: 1: 922;P_train = res(temp(1: 700), 1: 15)';T_train = res(temp(1: 700), 16)';M = size(P_train, 2);P_test = res(temp(701: end), 1: 15)';T_test = res(temp(701: end), 16)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺% 将数据平铺成1维数据只是一种处理方式% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构% 但是应该始终和输入层数据结构保持一致p_train =  double(reshape(p_train, 15, 1, 1, M));p_test  =  double(reshape(p_test , 15, 1, 1, N));t_train =  double(t_train)';t_test  =  double(t_test )';%%  构造网络结构layers = [ imageInputLayer([15, 1, 1])                 % 输入层 输入数据规模[15, 1, 1]  convolution2dLayer([3, 1], 16, 'Stride', [1, 1], 'Padding', 'same')                                                           % 卷积核大小 3 * 1 生成 16 张特征图 batchNormalizationLayer                     % 批归一化层 reluLayer                                   % Relu激活层  convolution2dLayer([3, 1], 32, 'Stride', [1, 1], 'Padding', 'same')                                              % 卷积核大小 3 * 1 生成 32 张特征图 batchNormalizationLayer                     % 批归一化层 reluLayer                                   % Relu激活层 fullyConnectedLayer(1)                      % 全连接层 regressionLayer];                           % 回归层%%  参数设置options = trainingOptions('adam', ...      % Adam 梯度下降算法    'MaxEpochs', 800, ...                  % 最大训练次数 800    'InitialLearnRate', 5e-3, ...          % 初始学习率为 0.005    'LearnRateSchedule', 'piecewise', ...  % 学习率下降    'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1    'LearnRateDropPeriod', 600, ...        % 经过 600 次训练后 学习率为 0.005 * 0.1    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集    'Plots', 'training-progress', ...      % 画出曲线    'Verbose', false);%%  训练模型net = trainNetwork(p_train, t_train, layers, options);%%  模型预测t_sim1 = predict(net, p_train);t_sim2 = predict(net, p_test );%%  数据反归一化T_sim1 = mapminmax('reverse', t_sim1, ps_output);T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  绘制网络分析图analyzeNetwork(layers)%%  绘图figureplot(1: M, T_train, 'r-', 1: M, T_sim1, 'b-', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};title(string)xlim([1, M])gridfigureplot(1: N, T_test, 'r-', 1: N, T_sim2, 'b-', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};title(string)xlim([1, N])grid%%  相关指标计算% R2R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])disp(['测试集数据的R2为:', num2str(R2)])% MAEmae1 = sum(abs(T_sim1' - T_train)) ./ M ;mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])disp(['测试集数据的MAE为:', num2str(mae2)])% MBEmbe1 = sum(T_sim1' - T_train) ./ M ;mbe2 = sum(T_sim2' - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])disp(['测试集数据的MBE为:', num2str(mbe2)])%%  绘制散点图sz = 25;c = 'b';figurescatter(T_train, T_sim1, sz, c)hold onplot(xlim, ylim, '--k')xlabel('训练集真实值');ylabel('训练集预测值');xlim([min(T_train) max(T_train)])ylim([min(T_sim1) max(T_sim1)])title('训练集预测值 vs. 训练集真实值')figurescatter(T_test, T_sim2, sz, c)hold onplot(xlim, ylim, '--k')xlabel('测试集真实值');ylabel('测试集预测值');xlim([min(T_test) max(T_test)])ylim([min(T_sim2) max(T_sim2)])title('测试集预测值 vs. 测试集真实值')

⛄ 运行结果

⛄ 参考文献

[1] 吴俊杰,罗宇,刘亮,等.一种基于卷积神经网络的时间序列负荷预测方法:CN202210198854.X[P].CN202210198854.X[2023-07-12].

[2] 胡聪丛.基于卷积神经网络的多变量时间序列数值预测方法研究[J].数码设计(下), 2019.

[3] 吴俊杰,罗宇,刘亮,等.一种基于卷积神经网络的时间序列负荷预测方法:202210198854[P][2023-07-12].

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于卷神经网络CNN)的时间序列预测是一种使用CNN模型来处理时间序列数据并进行预测的方法。相比于传统的基于循环神经网络(RNN)的方法,CNN在处理时间序列数据时具有一些独特的优势。 以下是基于CNN时间序列预测的基本步骤: 1. 数据准备:将时间序列数据集分为训练集和测试集。训练集用于训练CNN模型,测试集用于评估模型的预测性能。 2. 数据转换:由于CNN是基于图像处理的模型,需要将时间序列数据转换为二维图像数据。常用的方法有滑动窗口法和傅里叶变换法等。 3. CNN模型构建:构建一个包含卷层、池化层和全连接层的CNN模型。卷层用于提取时间序列数据中的特征,池化层用于降低特征维度,全连接层用于输出预测结果。 4. 模型训练:使用训练集对CNN模型进行训练。通过反向传播算法更新模型的权重和偏置,以最小化预测误差。 5. 模型预测:使用训练好的CNN模型对测试集进行预测。输入测试集的图像数据,通过前向传播算法得到预测结果。 6. 模型评估:使用预测结果与测试集的真实值进行比较,计算预测误差、均方根误差等指标,评估模型的预测性能。 需要注意的是,基于CNN时间序列预测方法可以利用CNN时间序列数据的局部特征进行提取,并具有良好的并行性和可解释性。然而,在实际应用中,需要根据问题的复杂性和数据的特点来选择合适的CNN模型结构和参数设置,以获得更好的预测效果。同时,还可以结合其他技术和方法,如自注意力机制(self-attention)、残差网络(residual network)等,进一步提升预测性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值