【RF时序预测】基于随机森林算法的时间序列预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

随机森林算法是一种集成学习方法,通过组合多个决策树来进行分类和回归。

算法的原理如下:

  1. 建立多个决策树:随机森林由多个决策树组成,每个决策树都是独立地从训练数据中随机采样得到的。这种随机采样可以通过自助法(bootstrap)或者随机子集法(random subspace)进行。

  2. 随机特征选择:在每个决策树的节点上,只考虑部分特征进行分裂。这样可以增加决策树之间的差异性,提高整体模型的准确性。常用的特征选择方法有全特征选择和随机特征选择。

  3. 决策树的构建:根据选定的特征进行划分,使得每个子节点上的样本尽量属于同一类别或具有相似的回归值。通常使用信息熵、基尼系数等指标来评估划分质量。重复这个过程直到达到预定的停止条件。

  4. 集成投票/平均:对于分类问题,随机森林通过投票机制来确定最终的预测结果。每个决策树对样本进行分类,最后选择得票最多的类别作为整个随机森林的预测结果。对于回归问题,随机森林通过平均每个决策树的预测值来得到最终的预测结果。

随机森林算法具有很好的鲁棒性和泛化能力,能够有效地处理高维数据和大规模数据集,并且对于特征的缺失和噪声有较好的容错性。

对于基于随机森林算法的时间序列预测,你可以按照以下步骤进行:

  1. 数据准备:收集并整理时间序列数据,确保数据包含时间戳和要预测的目标变量。将数据分为训练集和测试集。

  2. 特征工程:针对时间序列数据,可以提取一些常见的特征,如滞后特征(lag features)、移动平均值等。这些特征可以帮助模型捕捉时间序列的趋势和周期性。

  3. 随机森林模型训练:使用训练集数据,构建随机森林模型。随机森林是一种集成学习方法,由多个决策树组成。每个决策树都基于不同的数据子集进行训练,最后通过投票或平均预测结果来得出最终的预测结果。

  4. 模型评估:使用测试集数据,评估模型的预测性能。可以使用一些指标如均方根误差(RMSE)、平均绝对百分比误差(MAPE)等来评估预测结果与实际值之间的差异。

  5. 模型优化:根据评估结果,可以尝试调整模型参数、增加更多特征或者尝试其他算法来优化模型的性能。

需要注意的是,随机森林算法在处理时间序列数据时可能存在一些限制,如无法捕捉长期依赖关系和忽略时间序列中的自相关性。因此,在实际应用中,可能需要考虑其他更适合时间序列预测的算法,如ARIMA、LSTM等。

⛄ 代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据(时间序列的单列数据)result = xlsread('数据集.xlsx');%%  数据分析num_samples = length(result);  % 样本个数 kim = 15;                      % 延时步长(kim个历史数据作为自变量)zim =  1;                      % 跨zim个时间点进行预测%%  构造数据集for i = 1: num_samples - kim - zim + 1    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];end%%  划分训练集和测试集temp = 1: 1: 922;P_train = res(temp(1: 700), 1: 15)';T_train = res(temp(1: 700), 16)';M = size(P_train, 2);P_test = res(temp(701: end), 1: 15)';T_test = res(temp(701: end), 16)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);t_test = mapminmax('apply', T_test, ps_output);%%  转置以适应模型p_train = p_train'; p_test = p_test';t_train = t_train'; t_test = t_test';%%  训练模型trees = 100;                                      % 决策树数目leaf  = 5;                                        % 最小叶子数OOBPrediction = 'on';                             % 打开误差图OOBPredictorImportance = 'on';                    % 计算特征重要性Method = 'regression';                            % 分类还是回归net = TreeBagger(trees, p_train, t_train, 'OOBPredictorImportance', OOBPredictorImportance,...      'Method', Method, 'OOBPrediction', OOBPrediction, 'minleaf', leaf);importance = net.OOBPermutedPredictorDeltaError;  % 重要性%%  仿真测试t_sim1 = predict(net, p_train);t_sim2 = predict(net, p_test );%%  数据反归一化T_sim1 = mapminmax('reverse', t_sim1, ps_output);T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  绘图figureplot(1: M, T_train, 'r-', 1: M, T_sim1, 'b-', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};title(string)xlim([1, M])gridfigureplot(1: N, T_test, 'r-', 1: N, T_sim2, 'b-', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};title(string)xlim([1, N])grid%%  绘制误差曲线figureplot(1: trees, oobError(net), 'b-', 'LineWidth', 1)legend('误差曲线')xlabel('决策树数目')ylabel('误差')xlim([1, trees])grid%%  绘制特征重要性figurebar(importance)legend('重要性')xlabel('特征')ylabel('重要性')%%  相关指标计算% R2R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])disp(['测试集数据的R2为:', num2str(R2)])% MAEmae1 = sum(abs(T_sim1' - T_train)) ./ M ;mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])disp(['测试集数据的MAE为:', num2str(mae2)])% MBEmbe1 = sum(T_sim1' - T_train) ./ M ;mbe2 = sum(T_sim2' - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])disp(['测试集数据的MBE为:', num2str(mbe2)])%%  绘制散点图sz = 25;c = 'b';figurescatter(T_train, T_sim1, sz, c)hold onplot(xlim, ylim, '--k')xlabel('训练集真实值');ylabel('训练集预测值');xlim([min(T_train) max(T_train)])ylim([min(T_sim1) max(T_sim1)])title('训练集预测值 vs. 训练集真实值')figurescatter(T_test, T_sim2, sz, c)hold onplot(xlim, ylim, '--k')xlabel('测试集真实值');ylabel('测试集预测值');xlim([min(T_test) max(T_test)])ylim([min(T_sim2) max(T_sim2)])title('测试集预测值 vs. 测试集真实值')

⛄ 运行结果

⛄ 参考文献

[1] 彭璐.基于长短时记忆网络的时间序列预测与应用研究[J].[2023-07-22].

[2] 胡玮.基于改进邻域粗糙集和随机森林算法的糖尿病预测研究[D].首都经济贸易大学[2023-07-22].DOI:CNKI:CDMD:2.1018.136129.

[3] 朱品光.基于随机森林回归算法的堆石坝爆破块度预测研究[D].天津大学[2023-07-22].

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位(Dv-Hop定位优化、RSSI定位优化) ##### 6.2 无线传感器覆盖优化 ##### 6.3 无线传感器通信及优化(Leach协议优化) ##### 6.4 无人机通信中继优化(组播优化)
随机森林算法是一种常用的机器学习算法,主要用于数据分类和预测。下面是一个基于随机森林算法的数据分类预测代码示例: ```python # 导入必要的库 import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 加载数据集 data = pd.read_csv("data.csv") # 假设数据存储在data.csv文件中 # 划分特征变量和目标变量 X = data.drop("target", axis=1) # 特征变量 y = data["target"] # 目标变量 # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建并训练随机森林分类器 rf = RandomForestClassifier(n_estimators=100) # 设置100个决策树 rf.fit(X_train, y_train) # 在测试集上进行预测 y_pred = rf.predict(X_test) # 计算预测准确率 accuracy = accuracy_score(y_test, y_pred) print(f"预测准确率:{accuracy}") # 对新数据进行分类预测 new_data = pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=["feature1", "feature2", "feature3", "feature4"]) new_pred = rf.predict(new_data) print(f"新数据预测结果:{new_pred}") ``` 以上代码使用了Python编程语言,首先导入了需要的库,包括pandas用于数据处理,sklearn.ensemble中的RandomForestClassifier用于构建随机森林分类器,sklearn.model_selection中的train_test_split用于划分训练集和测试集,sklearn.metrics中的accuracy_score用于计算预测准确率。 接着,通过pd.read_csv加载保存数据的CSV文件,并将数据划分为特征变量X和目标变量y。然后,使用train_test_split划分训练集和测试集,其中设置参数test_size=0.2表示将20%的数据作为测试集。接下来,创建并训练RandomForestClassifier分类器,其中设置n_estimators=100表示构建100个决策树。 在训练完成后,利用训练好的分类器在测试集上进行预测,使用accuracy_score计算预测准确率,并输出结果。最后,使用新数据进行分类预测,将新数据构建成DataFrame对象,调用rf.predict方法进行预测,并输出结果。 这段代码给出了基于随机森林算法的数据分类预测的基本流程,可以根据具体需求对参数进行调优和功能进行扩展。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值