【电力系统】考虑经济性的储能运行优化附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

在当今全球能源转型的背景下,电力系统的可持续发展成为了各国政府和能源公司的重要议题。为了实现可再生能源的大规模应用,储能技术被广泛认为是解决电力系统不稳定性和间歇性的有效手段之一。然而,储能系统的运行优化对于实现电力系统的经济性至关重要。

储能系统的运行优化涉及到多个方面,包括储能设备的调度、能量管理策略的制定以及市场机制的设计等。在电力系统中,储能设备可以通过储能和释放能量来平衡电力供需之间的差异,从而提高系统的稳定性和灵活性。然而,储能设备的运行成本较高,因此如何在满足电力需求的同时降低储能系统的运行成本成为了一个重要的问题。

为了实现储能系统的经济性,需要制定合理的能量管理策略。能量管理策略可以通过优化储能设备的充放电策略来实现对电力系统的经济调度。例如,在电力需求高峰期,储能设备可以通过释放储存的能量来满足电力需求,从而避免了高成本的燃煤发电机组的运行。而在电力需求低谷期,储能设备可以通过充电来储存廉价的电力,以备不时之需。通过合理的能量管理策略,可以实现储能系统的最优运行,从而降低系统的运行成本。

除了能量管理策略,市场机制的设计也对储能系统的经济性起到了关键作用。在传统的电力市场中,储能设备的参与度较低,因此其经济效益无法得到充分发挥。为了解决这个问题,一些国家和地区开始探索新的市场机制,例如引入储能容量市场和灵活性市场。储能容量市场可以通过向储能设备提供资金奖励来鼓励其提供备用容量,从而提高储能设备的经济效益。而灵活性市场可以通过向储能设备提供灵活性服务的奖励来鼓励其参与市场交易,从而提高储能系统的经济性。通过合理的市场机制设计,可以激励储能设备的参与度,从而提高系统的经济性。

总之,储能系统的运行优化对于实现电力系统的经济性至关重要。通过制定合理的能量管理策略和设计合理的市场机制,可以实现储能系统的经济调度和参与度,从而降低系统的运行成本。在未来的能源转型中,储能系统将扮演着越来越重要的角色,为电力系统的可持续发展做出贡献。

📣 部分代码

%%%%%%%%% the signal components are crossing %%%%%%%%%%%%%%% this example is adopted from paper:Chen S, Peng Z, Yang Y, et al, Intrinsic chirp component decomposition by using Fourier Series representation, Signal Processing, 2017.clcclearclose allSampFreq = 100;t = 0:1/SampFreq:15;Sig1 = cos(2*pi*(0.23+15*t + 0.2*t.^2));IF1 = 15 + 0.4*t;amp2 = 0.5*cos(2*pi*0.3*t)+1;Sig2 = amp2.*cos(2*pi*(5*sin(pi/4*t) +5*t + 1.2*t.^2 ));IF2 = 5*pi/4*cos(pi*t/4) + 2.4*t + 5;Sig3 = cos(2*pi*(0.35+35*t - 0.8*t.^2));IF3 = 35 - 1.6*t;Sig = Sig1 + Sig2 + Sig3;figureset(gcf,'Position',[20 100 320 250]);      set(gcf,'Color','w'); plot(t,Sig);xlabel('Time / Sec','FontSize',12,'FontName','Times New Roman');ylabel('Amplitude','FontSize',12,'FontName','Times New Roman');set(gca,'FontSize',12)set(gca,'linewidth',1);%% STFTwindow = 128;Nfrebin = 1024;figure[Spec,f] = STFT(Sig',SampFreq,Nfrebin,window);imagesc(t,f,abs(Spec)); axis([0 15 0 50]);set(gcf,'Position',[20 100 320 250]);   xlabel('Time / Sec','FontSize',12,'FontName','Times New Roman');ylabel('Frequency / Hz','FontSize',12,'FontName','Times New Roman');set(gca,'YDir','normal')set(gca,'FontSize',12);set(gcf,'Color','w');  %% ridge extraction and smoothingbw = SampFreq/80;% the bandwidth of the TF filter for ridge extractionbeta1 = 1e-4; % beta1 should be larger than the following betanum = 3; % the number of the componentsdelta = 20;[fidexmult, tfdv] = extridge_mult(Sig, SampFreq, num, delta, beta1,bw,Nfrebin,window);figureset(gcf,'Position',[20 100 640 500]);      set(gcf,'Color','w'); plot(t,f(fidexmult),'linewidth',3); % detected ridge curvesxlabel('Time / Sec','FontSize',24,'FontName','Times New Roman');ylabel('Frequency / Hz','FontSize',24,'FontName','Times New Roman');set(gca,'FontSize',24)set(gca,'linewidth',2);axis([0 15 0 50]);%% ridge path regrouping (RPRG)% the RPRG algorithm is developed to extract ridge curves of crossed signal modes% more details about the RPRG can be found in paper: Chen S, Dong X, Xing G, et al, Separation of Overlapped Non-Stationary Signals by Ridge Path Regrouping and Intrinsic Chirp Component Decomposition, IEEE Sensors Journal, 2017.thrf = length(f)/30;[findex,interset] = RPRG(fidexmult,thrf);figureset(gcf,'Position',[20 100 640 500]);      set(gcf,'Color','w'); plot(t,f(findex),'linewidth',3);xlabel('Time / Sec','FontSize',24,'FontName','Times New Roman');ylabel('Frequency / Hz','FontSize',24,'FontName','Times New Roman');set(gca,'FontSize',24)set(gca,'linewidth',2);axis([0 15 0 50]);%% parameter settingalpha = 1e-5; beta = 1e-5; % this parameter can be smaller which will be helpful for the convergence, but it may cannot properly track fast varying IFsiniIF = curvesmooth(f(findex),beta); % the initial guess for the IFs by ridge detection; the initial IFs should be smooth and thus we smooth the detected ridgesvar = 0;% noise variancetol = 1e-8;%tic[IFmset IA smset] = VNCMD(Sig,SampFreq,iniIF,alpha,beta,var,tol);tocfigureset(gcf,'Position',[20 100 640 500]);      set(gcf,'Color','w'); plot(t,iniIF(:,:),'linewidth',3); % initial IFsxlabel('Time / Sec','FontSize',24,'FontName','Times New Roman');ylabel('Frequency / Hz','FontSize',24,'FontName','Times New Roman');set(gca,'FontSize',24)set(gca,'linewidth',2);axis([0 15 0 50]);%% Relative errors of the initial IFs   iniRE1 =  norm(iniIF(1,:)-IF1)/norm(IF1)    iniRE2 =  norm(iniIF(2,:)-IF2)/norm(IF2)   iniRE3 =  norm(iniIF(3,:)-IF3)/norm(IF3)%% estimated IFfigureplot(t,[IF1;IF2;IF3],'b','linewidth',3) % true IFshold onplot(t,IFmset(:,:,end),'r','linewidth',3) % finally estimated IFsset(gcf,'Position',[20 100 640 500]);   xlabel('Time / Sec','FontSize',24,'FontName','Times New Roman');ylabel('Frequency / Hz','FontSize',24,'FontName','Times New Roman');set(gca,'YDir','normal')set(gca,'FontSize',24);set(gca,'linewidth',2);set(gcf,'Color','w');  axis([0 15 0 50])%% Relative errors of the finally estimated IFs   RE1 =  norm(IFmset(1,:,end)-IF1)/norm(IF1) % one can find that the accuracy of the finally estimated IFs is significantly improved compared with the initial IFs   RE2 =  norm(IFmset(2,:,end)-IF2)/norm(IF2)   RE3 =  norm(IFmset(3,:,end)-IF3)/norm(IF3)%% Reconstructed modesfigureset(gcf,'Position',[20 100 640 200]);      set(gcf,'Color','w'); plot(t,smset(1,:,end),'linewidth',2)  % estimated modehold onplot(t,Sig1 - smset(1,:,end),'k','linewidth',2)  % estimation errorshold onplot(t,IA(1,:),'r','linewidth',3) % estimated IAsxlabel('Time / Sec','FontSize',24,'FontName','Times New Roman');ylabel('m1','FontSize',24,'FontName','Times New Roman');set(gca,'YDir','normal')set(gca,'FontSize',24);set(gca,'linewidth',2);  axis([0 15 -1.5 1.5])figureset(gcf,'Position',[20 100 640 200]);      set(gcf,'Color','w'); plot(t,smset(2,:,end),'linewidth',2)  % estimated modehold onplot(t,Sig2 - smset(2,:,end),'k','linewidth',2)  % estimation errorshold onplot(t,IA(2,:),'r','linewidth',3) % estimated IAsxlabel('Time / Sec','FontSize',24,'FontName','Times New Roman');ylabel('m2','FontSize',24,'FontName','Times New Roman');set(gca,'YDir','normal')set(gca,'FontSize',24);set(gca,'linewidth',2);  axis([0 15 -2 2])figureset(gcf,'Position',[20 100 640 200]);      set(gcf,'Color','w'); plot(t,smset(3,:,end),'linewidth',2)  % estimated modehold onplot(t,Sig3 - smset(3,:,end),'k','linewidth',2)  % estimation errorshold onplot(t,IA(3,:),'r','linewidth',3) % estimated IAsxlabel('Time / Sec','FontSize',24,'FontName','Times New Roman');ylabel('m3','FontSize',24,'FontName','Times New Roman');set(gca,'YDir','normal')set(gca,'FontSize',24);set(gca,'linewidth',2);  axis([0 15 -1.5 1.5])

⛳️ 运行结果

🔗 参考文献

[1] 王颖.面向复杂不确定性的电力系统运行优化研究[D].东南大学,2018.

[2] 邱再森.储能规划及不同运行模式下经济性研究[D].郑州大学[2023-10-12].DOI:CNKI:CDMD:2.1018.109662.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值