基于Matlab实现SDAE堆叠去噪自编码器的数据分类预测 可作为深度学习对比预测模型,丰富实验内容,自带数据集,直接运行

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在当今信息爆炸的时代,数据处理和分析已经成为了各行各业中不可或缺的一部分。随着数据量的不断增加,如何有效地处理和分析这些海量数据成为了一个亟待解决的问题。在数据处理和分析领域,数据分类预测是一个非常重要的任务,它可以帮助我们更好地理解数据的特征和规律,从而为我们的决策提供有力的支持。

在数据分类预测任务中,自编码器是一种常用的神经网络模型。自编码器通过学习数据的特征表示,可以实现对数据的降维和特征提取,从而为后续的分类预测任务提供更好的输入。然而,传统的自编码器在处理噪声和提取高阶特征方面存在一定的局限性。为了解决这一问题,研究者们提出了堆叠去噪自编码器(Stacked Denoising Autoencoder, SDAE)模型。

堆叠去噪自编码器是一种多层的神经网络模型,它通过堆叠多个去噪自编码器来逐层地学习数据的特征表示。在每一层中,去噪自编码器可以有效地去除输入数据中的噪声,并学习数据的高阶特征。通过多层的堆叠,SDAE可以学习到更加抽象和复杂的数据特征表示,从而为数据分类预测任务提供更加丰富和有用的信息。

在实际的数据分类预测任务中,SDAE模型已经取得了一系列令人瞩目的成果。例如,在图像分类任务中,研究者们利用SDAE模型可以实现对图像特征的学习和提取,从而大大提高了图像分类的准确性和效率。在文本分类任务中,SDAE模型也可以帮助我们更好地理解文本数据的语义和结构,从而实现更加精准的文本分类和预测。

总的来说,基于堆叠去噪自编码器SDAE的数据分类预测具有非常广阔的应用前景和研究价值。随着深度学习和神经网络技术的不断发展,相信SDAE模型在数据分类预测领域中将会发挥越来越重要的作用,为我们的数据分析和决策提供更加有力的支持。希望未来能够有更多的研究者和工程师投入到SDAE模型的研究和应用中,共同推动这一领域的发展和进步。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

本程序参考以下中文EI期刊,程序注释清晰,干货满满。

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 23
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是使用TensorFlow实现编码器SDAE)的示例代码: ``` import tensorflow as tf import numpy as np # 定义输入占位符和声水平 n_input = 784 # MNIST数据集的输入维度 n_hidden_1 = 256 # 第一层隐藏层神经元数量 n_hidden_2 = 128 # 第二层隐藏层神经元数量 n_hidden_3 = 64 # 第三层隐藏层神经元数量 noise_level = 0.3 # 声水平 X = tf.placeholder("float", [None, n_input]) X_noise = tf.placeholder("float", [None, n_input]) # 定义权重和偏差变量 weights = { 'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), 'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'encoder_h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])), 'decoder_h1': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_2])), 'decoder_h2': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])), 'decoder_h3': tf.Variable(tf.random_normal([n_hidden_1, n_input])), } biases = { 'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])), 'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])), 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_2])), 'decoder_b2': tf.Variable(tf.random_normal([n_hidden_1])), 'decoder_b3': tf.Variable(tf.random_normal([n_input])), } # 定义编码器和解码器函数 def encoder(x): layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), biases['encoder_b1'])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), biases['encoder_b2'])) layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']), biases['encoder_b3'])) return layer_3 def decoder(x): layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), biases['decoder_b1'])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), biases['decoder_b2'])) layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']), biases['decoder_b3'])) return layer_3 # 添加声 X_noise = X + noise_level * tf.random_normal(tf.shape(X)) # 构建模型 encoder_op = encoder(X_noise) decoder_op = decoder(encoder_op) # 定义损失函数和优化器 cost = tf.reduce_mean(tf.pow(X - decoder_op, 2)) optimizer = tf.train.AdamOptimizer(learning_rate=0.01).minimize(cost) # 初始化变量 init = tf.global_variables_initializer() # 训练模型 with tf.Session() as sess: sess.run(init) for i in range(100): batch_xs, _ = mnist.train.next_batch(100) _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs}) if i % 10 == 0: print("Epoch:", '%04d' % (i+1), "cost=", "{:.9f}".format(c)) print("Optimization Finished!") # 测试模型 encode_decode = sess.run(decoder_op, feed_dict={X: mnist.test.images[:10]}) # 显示原始图像和重构图像 f, a = plt.subplots(2, 10, figsize=(10, 2)) for i in range(10): a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28))) a[1][i].imshow(np.reshape(encode_decode[i], (28, 28))) plt.show() ``` 在此示例中,我们使用了MNIST数据集来训练和测试模型。您可以使用自己的数据集来替换MNIST数据集。此外,您可以根据需要更改模型的超参数,例如隐藏层神经元数量,学习率和声水平。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值