✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
随着无人机技术的发展,无人机在各行各业得到了广泛的应用。在复杂地形下,无人机需要能够自主避障飞行,以确保安全。本文提出了一种基于帝企鹅算法(EPO)的无人机三维路径规划算法,该算法能够有效地规划出复杂地形下无人机的避障三维航迹。
1. 概述
本文提出的无人机三维路径规划算法基于帝企鹅算法(EPO)。帝企鹅算法(EPO)是一种新型的元启发式算法,它模拟了帝企鹅在南极洲严寒环境下觅食的行为。帝企鹅算法(EPO)具有较强的鲁棒性和全局搜索能力,能够有效地求解复杂优化问题。
2. 算法原理
本文提出的无人机三维路径规划算法的基本原理如下:
-
初始化帝企鹅种群。
-
计算每个帝企鹅的适应度值。
-
选择适应度值较高的帝企鹅作为父代。
-
对父代进行交叉和变异操作,生成子代。
-
计算子代的适应度值。
-
选择适应度值较高的子代作为新的帝企鹅种群。
-
重复步骤2-6,直到达到最大迭代次数或满足终止条件。
3. 算法实现
本文提出的无人机三维路径规划算法使用Python语言实现。算法的具体实现步骤如下:
-
导入必要的库。
-
定义帝企鹅类。
-
定义帝企鹅种群类。
-
定义交叉和变异操作。
-
定义适应度函数。
-
定义主函数。
📣 部分代码
function DrawPic(result1,data,str)
figure
plot3(data.S0(:,1)*data.unit(1),data.S0(:,2)*data.unit(2),data.S0(:,3)*data.unit(3),'o','LineWidth',1.5,...
'MarkerEdgeColor','g',...
'MarkerFaceColor','g',...
'MarkerSize',8)
hold on
plot3(data.E0(:,1)*data.unit(1),data.E0(:,2)*data.unit(2),data.E0(:,3)*data.unit(3),'h','LineWidth',1.5,...
'MarkerEdgeColor','g',...
'MarkerFaceColor','g',...
'MarkerSize',8)
plot3(result1.path(:,1).*data.unit(1),result1.path(:,2).*data.unit(2),result1.path(:,3).*data.unit(3),'-','LineWidth',1.5,...
'MarkerEdgeColor','g',...
'MarkerFaceColor','g',...
'MarkerSize',10)
for i=1:data.numObstacles
x=1+data.Obstacle(i,1);
y=1+data.Obstacle(i,2);
z=1+data.Obstacle(i,3);
long=data.Obstacle(i,4);
wide=data.Obstacle(i,5);
pretty=data.Obstacle(i,6);
x0=ceil(x/data.unit(1))*data.unit(1);
y0=ceil(y/data.unit(2))*data.unit(2);
z0=ceil(z/data.unit(3))*data.unit(3);
long0=ceil(long/data.unit(1))*data.unit(1);
wide0=ceil(wide/data.unit(2))*data.unit(2);
pretty0=ceil(pretty/data.unit(3))*data.unit(3);
[V,F] = DrawCuboid(long0, wide0, pretty0, x0,y0,z0);
end
legend('起点','终点','location','north')
grid on
%axis equal
xlabel('x(km)')
ylabel('y(km)')
zlabel('z(km)')
title([str, '最优结果:', num2str(result1.fit)])
% figure
% plot3(data.S0(:,1)*data.unit(1),data.S0(:,2)*data.unit(2),data.S0(:,3)*data.unit(3),'o','LineWidth',2,...
% 'MarkerEdgeColor','r',...
% 'MarkerFaceColor','r',...
% 'MarkerSize',10)
% hold on
% plot3(data.E0(:,1)*data.unit(1),data.E0(:,2)*data.unit(2),data.E0(:,3)*data.unit(3),'h','LineWidth',2,...
% 'MarkerEdgeColor','r',...
% 'MarkerFaceColor','r',...
% 'MarkerSize',10)
% plot3(result1.path(:,1).*data.unit(1),result1.path(:,2).*data.unit(2),result1.path(:,3).*data.unit(3),'-','LineWidth',2,...
% 'MarkerEdgeColor','k',...
% 'MarkerFaceColor','r',...
% 'MarkerSize',10)
% for i=1:data.numObstacles
% x=1+data.Obstacle(i,1);
% y=1+data.Obstacle(i,2);
% z=1+data.Obstacle(i,3);
% long=data.Obstacle(i,4);
% wide=data.Obstacle(i,5);
% pretty=data.Obstacle(i,6);
%
% x0=ceil(x/data.unit(1))*data.unit(1);
% y0=ceil(y/data.unit(2))*data.unit(2);
% z0=ceil(z/data.unit(3))*data.unit(3);
% long0=ceil(long/data.unit(1))*data.unit(1);
% wide0=ceil(wide/data.unit(2))*data.unit(2);
% pretty0=ceil(pretty/data.unit(3))*data.unit(3);
% [V,F] = DrawCuboid(long0, wide0, pretty0, x0,y0,z0);
% end
% legend('起点','终点','location','north')
% grid on
% xlabel('x(km)')
% ylabel('y(km)')
% zlabel('z(km)')
% title([str, '最优结果:', num2str(result1.fit)])
end
⛳️ 运行结果
4. 仿真实验
本文提出的无人机三维路径规划算法在复杂地形下进行了仿真实验。仿真实验结果表明,该算法能够有效地规划出复杂地形下无人机的避障三维航迹。
5. 结论
本文提出了一种基于帝企鹅算法(EPO)的无人机三维路径规划算法,该算法能够有效地规划出复杂地形下无人机的避障三维航迹。仿真实验结果表明,该算法具有较强的鲁棒性和全局搜索能力,能够有效地求解复杂优化问题。
🔗 参考文献
[1] 刘艳,李文波,刘新彪,等.复杂环境下无人机三维航迹规划及避障算法[J].电光与控制, 2023, 30(5):93-98.
[2] 徐宏飞.面向智慧避障的物流无人机航迹规划研究[J].北京交通大学[2024-01-14].
[3] 郭启程杜晓玉张延宇周毅.基于改进鲸鱼算法的无人机三维路径规划[J].计算机科学, 2021, 48(12):304-311.