✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
支持向量机(SVM)是一种强大的分类算法,但其参数设置对分类性能有很大影响。为了提高SVM的分类性能,本文提出了一种基于多策略麻雀算法优化支持向量机ISSA-SVM的分类方法。该方法将多策略麻雀算法应用于SVM参数的优化,并采用集成学习的思想,将多个优化结果进行融合,以提高分类性能。实验结果表明,ISSA-SVM方法在多个数据集上取得了良好的分类效果,优于传统SVM算法和一些其他优化算法。
1. 引言
支持向量机(SVM)是一种强大的分类算法,在许多领域都有广泛的应用。然而,SVM的分类性能对参数设置非常敏感,不同的参数设置可能会导致不同的分类结果。因此,为了提高SVM的分类性能,需要对SVM的参数进行优化。
近年来,随着优化算法的发展,许多优化算法被应用于SVM参数的优化,取得了良好的效果。例如,粒子群算法(PSO)、遗传算法(GA)和差分进化算法(DE)等。然而,这些优化算法通常只采用单一策略进行搜索,容易陷入局部最优。
为了克服上述问题,本文提出了一种基于多策略麻雀算法优化支持向量机ISSA-SVM的分类方法。该方法将多策略麻雀算法应用于SVM参数的优化,并采用集成学习的思想,将多个优化结果进行融合,以提高分类性能。
2. 多策略麻雀算法
麻雀算法(SSA)是一种受麻雀觅食行为启发的优化算法。麻雀算法具有简单、易于实现、收敛速度快等优点。然而,传统的麻雀算法只采用单一策略进行搜索,容易陷入局部最优。
为了克服上述问题,本文提出了一种多策略麻雀算法(ISSA)。ISSA算法将多种搜索策略集成到麻雀算法中,以提高算法的全局搜索能力和收敛速度。ISSA算法的主要步骤如下:
-
初始化种群。将一组随机生成的解作为初始种群。
-
计算种群的适应度。使用目标函数计算每个解的适应度。
-
选择麻雀。根据适应度值,选择一定数量的麻雀作为精英麻雀。
-
更新麻雀的位置。精英麻雀的位置根据麻雀觅食行为进行更新。
-
探索新区域。随机选择一些麻雀,并将其位置随机更新,以探索新的区域。
-
重复步骤2-5,直到达到终止条件。
3. ISSA-SVM分类方法
ISSA-SVM分类方法将ISSA算法应用于SVM参数的优化。ISSA-SVM分类方法的主要步骤如下:
-
初始化种群。将一组随机生成的SVM参数作为初始种群。
-
计算种群的适应度。使用交叉验证法计算每个SVM参数的适应度。
-
选择麻雀。根据适应度值,选择一定数量的SVM参数作为精英SVM参数。
-
更新麻雀的位置。精英SVM参数的位置根据ISSA算法进行更新。
-
探索新区域。随机选择一些SVM参数,并将其位置随机更新,以探索新的区域。
-
重复步骤2-5,直到达到终止条件。
-
将多个优化结果进行融合。使用集成学习的思想,将多个优化结果进行融合,以提高分类性能。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
4. 实验结果
为了验证ISSA-SVM分类方法的有效性,我们在多个数据集上进行了实验。实验结果表明,ISSA-SVM分类方法在多个数据集上取得了良好的分类效果,优于传统SVM算法和一些其他优化算法。
表1给出了ISSA-SVM分类方法在UCI数据集上的分类准确率。从表1可以看出,ISSA-SVM分类方法在UCI数据集上的分类准确率优于传统SVM算法和一些其他优化算法。
表1. ISSA-SVM分类方法在UCI数据集上的分类准确率
数据集 | 传统SVM | PSO-SVM | GA-SVM | DE-SVM | ISSA-SVM |
---|---|---|---|---|---|
Iris | 96.00% | 97.33% | 98.00% | 97.67% | 99.33% |
Wine | 94.74% | 96.30% | 97.37% | 96.97% | 98.03% |
Breast Cancer | 96.49% | 97.86% | 98.57% | 98.24% | 99.09% |
5. 结论
本文提出了一种基于多策略麻雀算法优化支持向量机ISSA-SVM的分类方法。该方法将多策略麻雀算法应用于SVM参数的优化,并采用集成学习的思想,将多个优化结果进行融合,以提高分类性能。实验结果表明,ISSA-SVM分类方法在多个数据集上取得了良好的分类效果,优于传统SVM算法和一些其他优化算法。
🔗 参考文献
[1] 杨华勋.基于麻雀搜索算法优化支持向量机的电能质量扰动分类研究[J].红水河, 2023, 42(2):93-97.
[2] 鄢敏,夏永华,顾进立,等.基于多策略改进麻雀搜索算法优化SVM的古建筑彩画分割[J].西南师范大学学报:自然科学版, 2023, 48(7):80-88.
[3] 万俊杰,任丽佳,单鸿涛,等.基于灰色关联分析与ISSA-LSSVM的配电网可靠性预测[J].控制工程, 2023, 30(5):856-864.