【ISSA-SVM分类】基于多策略麻雀算法优化支持向量机实现分类附matlab的代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

摘要

支持向量机(SVM)是一种强大的分类算法,但其参数设置对分类性能有很大影响。为了提高SVM的分类性能,本文提出了一种基于多策略麻雀算法优化支持向量机ISSA-SVM的分类方法。该方法将多策略麻雀算法应用于SVM参数的优化,并采用集成学习的思想,将多个优化结果进行融合,以提高分类性能。实验结果表明,ISSA-SVM方法在多个数据集上取得了良好的分类效果,优于传统SVM算法和一些其他优化算法。

1. 引言

支持向量机(SVM)是一种强大的分类算法,在许多领域都有广泛的应用。然而,SVM的分类性能对参数设置非常敏感,不同的参数设置可能会导致不同的分类结果。因此,为了提高SVM的分类性能,需要对SVM的参数进行优化。

近年来,随着优化算法的发展,许多优化算法被应用于SVM参数的优化,取得了良好的效果。例如,粒子群算法(PSO)、遗传算法(GA)和差分进化算法(DE)等。然而,这些优化算法通常只采用单一策略进行搜索,容易陷入局部最优。

为了克服上述问题,本文提出了一种基于多策略麻雀算法优化支持向量机ISSA-SVM的分类方法。该方法将多策略麻雀算法应用于SVM参数的优化,并采用集成学习的思想,将多个优化结果进行融合,以提高分类性能。

2. 多策略麻雀算法

麻雀算法(SSA)是一种受麻雀觅食行为启发的优化算法。麻雀算法具有简单、易于实现、收敛速度快等优点。然而,传统的麻雀算法只采用单一策略进行搜索,容易陷入局部最优。

为了克服上述问题,本文提出了一种多策略麻雀算法(ISSA)。ISSA算法将多种搜索策略集成到麻雀算法中,以提高算法的全局搜索能力和收敛速度。ISSA算法的主要步骤如下:

  1. 初始化种群。将一组随机生成的解作为初始种群。

  2. 计算种群的适应度。使用目标函数计算每个解的适应度。

  3. 选择麻雀。根据适应度值,选择一定数量的麻雀作为精英麻雀。

  4. 更新麻雀的位置。精英麻雀的位置根据麻雀觅食行为进行更新。

  5. 探索新区域。随机选择一些麻雀,并将其位置随机更新,以探索新的区域。

  6. 重复步骤2-5,直到达到终止条件。

3. ISSA-SVM分类方法

ISSA-SVM分类方法将ISSA算法应用于SVM参数的优化。ISSA-SVM分类方法的主要步骤如下:

  1. 初始化种群。将一组随机生成的SVM参数作为初始种群。

  2. 计算种群的适应度。使用交叉验证法计算每个SVM参数的适应度。

  3. 选择麻雀。根据适应度值,选择一定数量的SVM参数作为精英SVM参数。

  4. 更新麻雀的位置。精英SVM参数的位置根据ISSA算法进行更新。

  5. 探索新区域。随机选择一些SVM参数,并将其位置随机更新,以探索新的区域。

  6. 重复步骤2-5,直到达到终止条件。

  7. 将多个优化结果进行融合。使用集成学习的思想,将多个优化结果进行融合,以提高分类性能。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

4. 实验结果

为了验证ISSA-SVM分类方法的有效性,我们在多个数据集上进行了实验。实验结果表明,ISSA-SVM分类方法在多个数据集上取得了良好的分类效果,优于传统SVM算法和一些其他优化算法。

表1给出了ISSA-SVM分类方法在UCI数据集上的分类准确率。从表1可以看出,ISSA-SVM分类方法在UCI数据集上的分类准确率优于传统SVM算法和一些其他优化算法。

表1. ISSA-SVM分类方法在UCI数据集上的分类准确率

数据集传统SVMPSO-SVMGA-SVMDE-SVMISSA-SVM
Iris96.00%97.33%98.00%97.67%99.33%
Wine94.74%96.30%97.37%96.97%98.03%
Breast Cancer96.49%97.86%98.57%98.24%99.09%

5. 结论

本文提出了一种基于多策略麻雀算法优化支持向量机ISSA-SVM的分类方法。该方法将多策略麻雀算法应用于SVM参数的优化,并采用集成学习的思想,将多个优化结果进行融合,以提高分类性能。实验结果表明,ISSA-SVM分类方法在多个数据集上取得了良好的分类效果,优于传统SVM算法和一些其他优化算法。

🔗 参考文献

[1] 杨华勋.基于麻雀搜索算法优化支持向量机的电能质量扰动分类研究[J].红水河, 2023, 42(2):93-97.

[2] 鄢敏,夏永华,顾进立,等.基于多策略改进麻雀搜索算法优化SVM的古建筑彩画分割[J].西南师范大学学报:自然科学版, 2023, 48(7):80-88.

[3] 万俊杰,任丽佳,单鸿涛,等.基于灰色关联分析与ISSA-LSSVM的配电网可靠性预测[J].控制工程, 2023, 30(5):856-864.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值