【LEACH协议】加入簇头的多跳传输机制LEACH附matlab代码

本文介绍了LEACH协议如何通过多跳传输机制在无线传感器网络(WSN)中优化能耗,减少节点间直接传输带来的能量消耗,从而延长网络寿命和提高容量。同时,文章讨论了多跳传输带来的路由开销、延迟和可靠性挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

低能耗自组织网络(WSN)是一种由大量分布式传感器节点组成的无线网络,用于监测物理环境或执行特定任务。WSN 节点通常受到严格的能源限制,因此设计高效的能量管理机制至关重要。LEACH(低能耗自适应分层群集)协议是一种广泛使用的 WSN 协议,它通过采用多跳传输机制来优化能耗。

LEACH 协议概述

LEACH 协议将 WSN 节点组织成簇,每个簇由一个簇头和多个成员节点组成。簇头负责收集成员节点的数据并将其转发到汇聚点(通常是网关或基站)。传统的多跳传输机制要求数据从源节点直接传输到汇聚点,这可能会消耗大量能量,尤其是在网络规模较大时。

LEACH 的多跳传输机制

为了解决这个问题,LEACH 协议采用了多跳传输机制,其中数据从源节点通过中间节点转发到簇头。这种方法可以显着减少能量消耗,因为每个节点只需要传输数据到其最近的邻居,而不是直接传输到汇聚点。

LEACH 协议使用一种随机算法来选择簇头。在每个轮次中,每个节点都有一个成为簇头的概率。成为簇头的节点称为簇头,负责收集成员节点的数据并将其转发到汇聚点。其他节点称为成员节点,它们将数据发送到簇头。

多跳传输的优点

LEACH 的多跳传输机制提供了以下优点:

  • **减少能量消耗:**通过减少每个节点的传输距离,多跳传输可以显着降低能量消耗。

  • **延长网络寿命:**通过减少能量消耗,多跳传输可以延长 WSN 的网络寿命。

  • **提高网络容量:**多跳传输可以通过减少网络拥塞来提高网络容量。

多跳传输的挑战

尽管多跳传输具有优点,但也存在一些挑战:

  • **路由开销:**多跳传输需要维护路由信息,这可能会增加网络开销。

  • **延迟:**多跳传输会增加数据传输的延迟,因为数据需要通过多个节点转发。

  • **可靠性:**多跳传输的可靠性可能较低,因为数据需要通过多个节点转发,每个节点都可能发生故障。

📣 部分代码

clear;clc;con=0;xm = 200;ym = 200;sink.x =0.5 * xm;sink.y = ym + 50;n =100;   %节点总数p=0.05;%(成为簇头的最佳比例)%Energy ModelEo = 1;%(最初能量)%Eelec=Etx=ErxETX1=0.001;ERX1=0.001;ETX2=0.0001;ERX2=0.0001;%Transmit Amplifier types  Efs,Emp%Data Aggregation EnergyEDA=5*0.000000001;            %数据融合INFINITY = 999999999999999;    %无穷%maximum number of roundsrmax=20;     %循环次数

⛳️ 运行结果

结论

LEACH 协议的多跳传输机制是一种有效的方法,可以优化 WSN 中的能耗。通过减少每个节点的传输距离,多跳传输可以显着延长网络寿命并提高网络容量。然而,在设计多跳传输机制时,需要仔细考虑路由开销、延迟和可靠性等挑战。

🔗 参考文献

[1] 李岩,张曦煌,李彦中.基于LEACH协议的簇头多跳(LEACH-M)算法[J].计算机工程与设计, 2007, 28(17):3.DOI:10.3969/j.issn.1000-7024.2007.17.031.

[2] 伍琛尧.ZigBee协议栈及无线传感器网络路由协议的研究[D].华中科技大学[2024-02-23].DOI:CNKI:CDMD:2.2009.034650.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值