✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
低能耗自组织网络(WSN)是一种由大量分布式传感器节点组成的无线网络,用于监测物理环境或执行特定任务。WSN 节点通常受到严格的能源限制,因此设计高效的能量管理机制至关重要。LEACH(低能耗自适应分层群集)协议是一种广泛使用的 WSN 协议,它通过采用多跳传输机制来优化能耗。
LEACH 协议概述
LEACH 协议将 WSN 节点组织成簇,每个簇由一个簇头和多个成员节点组成。簇头负责收集成员节点的数据并将其转发到汇聚点(通常是网关或基站)。传统的多跳传输机制要求数据从源节点直接传输到汇聚点,这可能会消耗大量能量,尤其是在网络规模较大时。
LEACH 的多跳传输机制
为了解决这个问题,LEACH 协议采用了多跳传输机制,其中数据从源节点通过中间节点转发到簇头。这种方法可以显着减少能量消耗,因为每个节点只需要传输数据到其最近的邻居,而不是直接传输到汇聚点。
LEACH 协议使用一种随机算法来选择簇头。在每个轮次中,每个节点都有一个成为簇头的概率。成为簇头的节点称为簇头,负责收集成员节点的数据并将其转发到汇聚点。其他节点称为成员节点,它们将数据发送到簇头。
多跳传输的优点
LEACH 的多跳传输机制提供了以下优点:
-
**减少能量消耗:**通过减少每个节点的传输距离,多跳传输可以显着降低能量消耗。
-
**延长网络寿命:**通过减少能量消耗,多跳传输可以延长 WSN 的网络寿命。
-
**提高网络容量:**多跳传输可以通过减少网络拥塞来提高网络容量。
多跳传输的挑战
尽管多跳传输具有优点,但也存在一些挑战:
-
**路由开销:**多跳传输需要维护路由信息,这可能会增加网络开销。
-
**延迟:**多跳传输会增加数据传输的延迟,因为数据需要通过多个节点转发。
-
**可靠性:**多跳传输的可靠性可能较低,因为数据需要通过多个节点转发,每个节点都可能发生故障。
📣 部分代码
clear;
clc;
con=0;
xm = 200;
ym = 200;
sink.x =0.5 * xm;
sink.y = ym + 50;
n =100; %节点总数
p=0.05;%(成为簇头的最佳比例)
%Energy Model
Eo = 1;%(最初能量)
%Eelec=Etx=Erx
ETX1=0.001;
ERX1=0.001;
ETX2=0.0001;
ERX2=0.0001;
%Transmit Amplifier types Efs,Emp
%Data Aggregation Energy
EDA=5*0.000000001; %数据融合
INFINITY = 999999999999999; %无穷
%maximum number of rounds
rmax=20; %循环次数
⛳️ 运行结果
结论
LEACH 协议的多跳传输机制是一种有效的方法,可以优化 WSN 中的能耗。通过减少每个节点的传输距离,多跳传输可以显着延长网络寿命并提高网络容量。然而,在设计多跳传输机制时,需要仔细考虑路由开销、延迟和可靠性等挑战。
🔗 参考文献
[1] 李岩,张曦煌,李彦中.基于LEACH协议的簇头多跳(LEACH-M)算法[J].计算机工程与设计, 2007, 28(17):3.DOI:10.3969/j.issn.1000-7024.2007.17.031.
[2] 伍琛尧.ZigBee协议栈及无线传感器网络路由协议的研究[D].华中科技大学[2024-02-23].DOI:CNKI:CDMD:2.2009.034650.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类