【雷达】基于Matlab模拟固定雷达LFM信号的仿真与压缩,建立了对移动目标的回波模型

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

引言 雷达信号处理技术是雷达系统的重要组成部分,对雷达性能至关重要。线性调频调制(LFM)信号是一种常用的雷达信号,具有良好的距离分辨率和抗干扰能力。本文介绍了固定雷达LFM信号的仿真与压缩方法,并建立了对移动目标的回波模型。

LFM信号仿真 LFM信号的仿真可以通过数字信号处理技术实现。首先,根据雷达参数(如带宽、脉冲宽度等)生成一个离散时间序列。然后,对该序列进行线性调频调制,即对每个采样点乘以一个与时间成线性关系的相位因子。

LFM信号压缩 LFM信号压缩是指将宽带LFM信号压缩成窄带信号的过程。常用的压缩方法有匹配滤波和脉冲压缩。匹配滤波通过与LFM信号匹配的滤波器对信号进行滤波,可以实现最大的信噪比。脉冲压缩通过对LFM信号进行傅里叶变换,然后对感兴趣的频段进行滤波,可以实现更高的距离分辨率。

移动目标回波模型 对于移动目标,其回波信号会由于多普勒效应而产生频移。本文建立了一个移动目标的回波模型,考虑了目标的速度和雷达与目标之间的距离。通过该模型,可以计算出移动目标回波信号的频移和幅度。

仿真结果 本文对固定雷达LFM信号的仿真、压缩和移动目标回波模型进行了仿真验证。仿真结果表明,所提出的方法能够有效地仿真LFM信号,压缩LFM信号,并建立对移动目标回波的准确模型。

结论 本文介绍了固定雷达LFM信号的仿真、压缩和移动目标回波模型的建立方法。仿真结果验证了所提出的方法的有效性。该方法可以应用于雷达信号处理、目标检测和跟踪等领域。

📣 部分代码

                   'gui_OutputFcn',  @main_OutputFcn, ...                   'gui_LayoutFcn',  [], ...                   'gui_Callback',   []);if nargin && ischar(varargin{1})   gui_State.gui_Callback = str2func(varargin{1});endif nargout    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});else    gui_mainfcn(gui_State, varargin{:});endendfunction main_OpeningFcn(hObject, eventdata, handles, varargin)handles.output = hObject;% Update handles structureguidata(hObject, handles);end% --- Outputs from this function are returned to the command line.function varargout = main_OutputFcn(hObject, eventdata, handles)% Get default command line output from handles structurevarargout{1} = handles.output;end% --- Executes during object creation, after setting all properties.function edit1_CreateFcn(hObject, eventdata, handles)if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))    set(hObject,'BackgroundColor','white');endend

⛳️ 运行结果

🔗 参考文献

[1] 苑立杰.免疫遗传算法在车辆路径问题中的应用研究[D].大连海事大学,2013.

[2] 袁菲.线性调频雷达回波建模与仿真[D].电子科技大学[2024-04-01].DOI:CNKI:CDMD:2.1012.472092.

[3] 谷华升.波束内群目标参数估计与跟踪技术研究[D].[2024-04-01].

[4] 朱象胜.基于高分辨率雷达的海杂波建模及弱目标检测[D].南昌航空大学,2021.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值