✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
引言 雷达信号处理技术是雷达系统的重要组成部分,对雷达性能至关重要。线性调频调制(LFM)信号是一种常用的雷达信号,具有良好的距离分辨率和抗干扰能力。本文介绍了固定雷达LFM信号的仿真与压缩方法,并建立了对移动目标的回波模型。
LFM信号仿真 LFM信号的仿真可以通过数字信号处理技术实现。首先,根据雷达参数(如带宽、脉冲宽度等)生成一个离散时间序列。然后,对该序列进行线性调频调制,即对每个采样点乘以一个与时间成线性关系的相位因子。
LFM信号压缩 LFM信号压缩是指将宽带LFM信号压缩成窄带信号的过程。常用的压缩方法有匹配滤波和脉冲压缩。匹配滤波通过与LFM信号匹配的滤波器对信号进行滤波,可以实现最大的信噪比。脉冲压缩通过对LFM信号进行傅里叶变换,然后对感兴趣的频段进行滤波,可以实现更高的距离分辨率。
移动目标回波模型 对于移动目标,其回波信号会由于多普勒效应而产生频移。本文建立了一个移动目标的回波模型,考虑了目标的速度和雷达与目标之间的距离。通过该模型,可以计算出移动目标回波信号的频移和幅度。
仿真结果 本文对固定雷达LFM信号的仿真、压缩和移动目标回波模型进行了仿真验证。仿真结果表明,所提出的方法能够有效地仿真LFM信号,压缩LFM信号,并建立对移动目标回波的准确模型。
结论 本文介绍了固定雷达LFM信号的仿真、压缩和移动目标回波模型的建立方法。仿真结果验证了所提出的方法的有效性。该方法可以应用于雷达信号处理、目标检测和跟踪等领域。
📣 部分代码
'gui_OutputFcn', @main_OutputFcn, ...
'gui_LayoutFcn', [], ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
end
function main_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
end
% --- Outputs from this function are returned to the command line.
function varargout = main_OutputFcn(hObject, eventdata, handles)
% Get default command line output from handles structure
varargout{1} = handles.output;
end
% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
end
⛳️ 运行结果
🔗 参考文献
[1] 苑立杰.免疫遗传算法在车辆路径问题中的应用研究[D].大连海事大学,2013.
[2] 袁菲.线性调频雷达回波建模与仿真[D].电子科技大学[2024-04-01].DOI:CNKI:CDMD:2.1012.472092.
[3] 谷华升.波束内群目标参数估计与跟踪技术研究[D].[2024-04-01].
[4] 朱象胜.基于高分辨率雷达的海杂波建模及弱目标检测[D].南昌航空大学,2021.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类