【控制】GPC对具有CARIMA模型的被控对象的控制matlab仿真

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

随着现代工业控制系统的不断发展,对被控对象进行精确控制的需求也越来越高。为了满足这一需求,出现了各种各样的控制方法,其中,GPC(Generalized Predictive Control,广义预测控制)是一种近年来发展迅速的控制方法,它具有预测能力强、鲁棒性好等优点,被广泛应用于各种工业控制系统中。

CARIMA模型

CARIMA(Controlled Autoregressive Integrated Moving Average,控制自回归积分滑动平均)模型是一种常用的时间序列模型,它可以用于描述具有输入和输出的动态系统。CARIMA模型的一般形式如下:

GPC对CARIMA模型的控制

GPC是一种基于模型预测的控制方法,它利用CARIMA模型对被控对象的未来输出进行预测,并根据预测结果调整控制输入,以使被控对象的输出跟踪期望的轨迹。GPC控制系统的结构如下图所示:

GPC控制系统的基本原理如下:

  1. 首先,建立被控对象的CARIMA模型。

  2. 根据CARIMA模型,预测未来一段时间内被控对象的输出。

  3. 根据预测结果,计算控制输入,以使被控对象的输出跟踪期望的轨迹。

  4. 将计算得到的控制输入发送给被控对象。

  5. 重复上述步骤,不断调整控制输入,以实现对被控对象的精确控制。

GPC控制的优点

与传统的控制方法相比,GPC控制具有以下优点:

  • 预测能力强:GPC可以根据CARIMA模型对未来一段时间内被控对象的输出进行精确预测,这使得它能够提前采取措施来应对可能出现的干扰。

  • 鲁棒性好:GPC对模型误差和参数变化具有较强的鲁棒性,即使模型不完全准确,GPC仍然能够实现对被控对象的有效控制。

  • 易于实现:GPC的控制算法相对简单,易于在实际系统中实现。

GPC控制的应用

GPC控制被广泛应用于各种工业控制系统中,例如:

  • 化工过程控制

  • 电力系统控制

  • 交通运输控制

  • 环境监测控制

总结

GPC是一种高效、鲁棒的控制方法,它可以有效地控制具有CARIMA模型的被控对象。随着工业控制系统的发展,GPC将会得到更加广泛的应用。

📣 部分代码

   %2019-03-14  %function:基本的GPC%parameter: function [y,ud_space,Theta_His] = GPC_d3(pN,PA,PB,na,nb,N,Nu,lambda,soft_ele,Cn)%############################## 用户编辑区 ##############################[First_t,Last_t,tim_len,t,yr,u_max,u_min] = GPC_ParameterEditSpace(pN,N);%#######################################################################%--------------------------------------------------1 表示已知量u=zeros(1, Last_t+1-First_t);    %控制量ud_space=zeros(1, Last_t+1-First_t);   %控制增量的存储y=zeros(1,Last_t+1-First_t);    %输出量w=rand(1,1+Last_t-First_t)*2-1;   %扰动。幅度范围(-1,1)的随机序列for k = 2-First_t : 1+Last_t-First_t    w(k) = w(k-1) + w(k);end                             %表示ω(k)/?%从A、B获取G%A=[1 -0.7 0];B=[0.9 -0.4];   %第一阶段被控对象务必为此rho=1;%----------------------------获取多项式P、QM=N+Nu+(na+1)+nb;   %矩阵阶数Theta = ones(M,1)*0.3;   %θTheta_His = 0.3*ones(M,1+Last_t-First_t);  %存储θ的轨迹,用于学习研究X = zeros(M,1);    %X'=[y(t),...,y(t-(N-1)),λ△u(t+Nu-1-N),...,λ△u(t-N)                       %-y(t-N),...,-y(t-na-N),-△u(t-N-1),...,-△u(t-N-nb)];Ud = zeros(N+nb,1);  %[△u(t-1),...,△u(t-N-nb)]Tud = 0;P_theta = ones(M,M);P_theta = P_theta+eye(M);  %随机的正定矩阵PX_taddN = zeros(M,1);   %X(t+N), 用于求△u(t)时与θ做矩阵乘法tic;%31-First_tfor k = 1-First_t : 1+Last_t-First_t   %时刻指针k, k=1-First_t对应实际时刻t=0%for t = 0         :  Last_t    %----------------------------------------3.1 检测k时刻输出y(k)    y(k) = GPC_get_yk(First_t,k,tim_len,u,y,w,PA,PB,Cn);    %获取y(k)    %if(k==1-First_t+50 || k==1-First_t+130)  %添加人工干扰        %y(k)=y(k)+10;    %end    %----------------------------------------3.2 参数估计    %------------------------------3.2.1 更新Ud,X    Ud = [Ud(1:N+nb-1,1)];    Ud = [ud;Ud];    X = [X(1:M-1,1)];    X = [y(k);X];    X(N+1) = lambda*Ud(N+1-Nu);    X(N+Nu+1) = -y(k-N);    X(N+Nu+na+2) = -Ud(N+1);    %-----------------------------3.2.2 更新θ    epsilon = Ud(N)-X'*Theta;    Mid = P_theta*X;         %P(t-1)*X(t)    Mid = Mid/(X'*Mid+rho);  %P(t-1)*X(t)/(rho+X(t)'*P(t-1)*X(t))    Theta = Theta+Mid*epsilon;      P_theta = (P_theta-Mid*X'*P_theta)/rho;    Theta_His(:,k) = Theta;  %记录θ轨迹    %----------------------------------------3.3 实时更新控制率    %求出△u(t),u(t)    for i=M:-1:N+Nu+2        X_taddN(i) = X_taddN(i-1);    end    X_taddN(N+Nu+1) = -y(k);  %历史输出项    X_taddN(N+Nu+na+2) = -Ud(1);  %历史输入项    %----- 设定值项    mid = yr(k)*(1-soft_ele);    X_taddN(N)=y(k)*soft_ele + mid;    for i=N-1:-1:1        X_taddN(i) = X_taddN(i+1)*soft_ele + mid;    end        ud = X_taddN'*Theta;    u(k) = u(k-1) + ud;    if u(k)<u_min           %给u(t)一些限制条件        u(k) = u_min;        ud = u_min - u(k-1);    elseif(u(k)>u_max)        u(k) = u_max;        ud = u_max - u(k-1);    end    ud_space(k)=ud;endrun_time=toc;figure(5);uicontrol('Style','text','Position',[10 0 150 20],'String',['运行时间: ',num2str(run_time),'s']);        %运行时间显示subplot(211);plot(t,yr,'b--',t,y,'r-');grid on;title('简单的 广义预测自适应控制 直接算法仿真');%xlim([First_t Last_t]);axis([First_t,Last_t,-10,60]);ylabel('输出y(k)');legend('设定值yr','实际值y','Location','Best');subplot(212);plot(t,ud_space);grid on;xlim([First_t Last_t]);%axis([First_t,Last_t,-40,40]);ylabel('控制增量u_d(k)');xlabel('k')%--------------------------------------------------5 编辑返回值y = [y(1,1-First_t:1+Last_t-First_t)];   %k = 0 ~ Last_tu = [u(1,1-First_t:1+Last_t-First_t)];ud_space = [ud_space(1,1-First_t:1+Last_t-First_t)];Theta_His = [Theta_His(:,1-First_t:1+Last_t-First_t)];DataTXT = fopen('.\GPC_simulate_data\GPC_d3__data.txt','w');%打开txt文件fprintf(DataTXT,'%s\t%s\t%s\t\t%s\r\n','时刻k','输出y','控制增量ud','各项估计参数θ(1~?)');data_len = length(y(:));theta_len = length(Theta_His(:,1));for j=1:data_len    fprintf(DataTXT,'%d\t',j-1);    fprintf(DataTXT,'%.3f\t%.3f\t\t',y(j),ud_space(j));    for i = 1:theta_len        fprintf(DataTXT,'%.4f\t',Theta_His(i,j));    end    fprintf(DataTXT,'\r\n');endfclose(DataTXT);

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值