独家首发 基于变分模态分解多头注意力机制的时间卷积神经网络结合双向门控单元VMD-TCN-BiGRU-MATT实现数据回归预测附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

近年来,光伏发电作为一种清洁能源,在全球范围内得到了快速发展。然而,光伏发电具有强烈的随机性和间歇性,准确预测光伏发电量对于电网调度和能源管理至关重要。本文提出了一种基于变分模态分解(VMD)、时间卷积神经网络(TCN)、双向门控循环神经网络(BiGRU)和多头注意力机制(MATT)的混合模型,用于光伏发电预测。该模型首先利用VMD将原始光伏功率时间序列分解成多个具有不同频率和振幅的模态分量,以提取不同时间尺度下的特征信息。然后,将每个模态分量输入到TCN中,以学习时间序列的复杂依赖关系。随后,将TCN的输出输入到BiGRU中,以捕捉时间序列的前后文信息。最后,利用MATT机制对BiGRU的输出进行加权融合,以提升模型的预测精度。本文还提供了相应的MATLAB代码,供读者参考学习。

1. 引言

光伏发电作为一种清洁可再生能源,具有巨大的发展潜力。然而,光伏发电量受太阳辐射、气象条件等因素的影响,具有强烈的随机性和间歇性。准确预测光伏发电量对于电力系统稳定运行至关重要,可以有效提高电网调度效率,降低弃光率,促进光伏发电的推广应用。

近年来,随着机器学习技术的发展,各种光伏发电预测模型被提出。其中,深度学习模型由于其强大的特征提取能力,在光伏发电预测领域取得了显著进展。然而,传统的深度学习模型往往忽略了时间序列数据的复杂依赖关系和不同时间尺度下的特征信息,导致预测精度有限。

为了克服上述问题,本文提出了一种基于VMD-TCN-BiGRU-MATT的混合模型,用于光伏发电预测。该模型将VMD、TCN、BiGRU和MATT这四种技术有机结合,充分提取时间序列的特征信息,提高预测精度。

2. 模型结构

本文提出的VMD-TCN-BiGRU-MATT模型结构如图1所示。

该模型主要由以下四个部分组成:

2.1 变分模态分解(VMD)

VMD是一种非平稳信号分解方法,可以将原始时间序列分解成多个具有不同频率和振幅的模态分量,以提取不同时间尺度下的特征信息。

2.2 时间卷积神经网络(TCN)

TCN是一种专门用于处理时间序列数据的卷积神经网络,它利用多个卷积层来学习时间序列的复杂依赖关系。TCN的优势在于可以有效地提取时间序列的长期依赖关系。

2.3 双向门控循环神经网络(BiGRU)

BiGRU是一种循环神经网络,可以同时捕捉时间序列的前后文信息。BiGRU的优势在于可以有效地学习时间序列的上下文信息,提高模型的预测精度。

2.4 多头注意力机制(MATT)

MATT是一种注意力机制,可以对不同特征进行加权融合,以提升模型的预测精度。MATT的优势在于可以有效地提取时间序列的重点信息,提高模型的泛化能力。

3. 模型训练

模型训练采用Adam优化器,并使用均方误差损失函数进行优化。具体训练步骤如下:

  1. 将原始光伏功率时间序列输入到VMD模块中进行分解,得到多个模态分量。

  2. 将每个模态分量输入到TCN模块中进行特征提取。

  3. 将TCN的输出输入到BiGRU模块中进行前后文信息提取。

  4. 将BiGRU的输出输入到MATT模块中进行加权融合。

  5. 使用均方误差损失函数计算模型的预测误差,并使用Adam优化器更新模型参数。

  6. 重复步骤2-5,直到模型收敛。

4. 实验结果

本文使用真实光伏功率数据对模型进行训练和测试。实验结果表明,VMD-TCN-BiGRU-MATT模型在光伏发电预测方面取得了良好的效果,其预测精度明显优于其他基准模型。

5. 结论

本文提出了一种基于VMD-TCN-BiGRU-MATT的混合模型,用于光伏发电预测。该模型利用VMD、TCN、BiGRU和MATT这四种技术的有机结合,有效地提取了时间序列的特征信息,提高了模型的预测精度。实验结果表明,该模型具有较好的预测性能,为光伏发电预测提供了一种新的方法。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值