✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
近年来,光伏发电作为一种清洁能源,在全球范围内得到了快速发展。然而,光伏发电具有强烈的随机性和间歇性,准确预测光伏发电量对于电网调度和能源管理至关重要。本文提出了一种基于变分模态分解(VMD)、时间卷积神经网络(TCN)、双向门控循环神经网络(BiGRU)和多头注意力机制(MATT)的混合模型,用于光伏发电预测。该模型首先利用VMD将原始光伏功率时间序列分解成多个具有不同频率和振幅的模态分量,以提取不同时间尺度下的特征信息。然后,将每个模态分量输入到TCN中,以学习时间序列的复杂依赖关系。随后,将TCN的输出输入到BiGRU中,以捕捉时间序列的前后文信息。最后,利用MATT机制对BiGRU的输出进行加权融合,以提升模型的预测精度。本文还提供了相应的MATLAB代码,供读者参考学习。
1. 引言
光伏发电作为一种清洁可再生能源,具有巨大的发展潜力。然而,光伏发电量受太阳辐射、气象条件等因素的影响,具有强烈的随机性和间歇性。准确预测光伏发电量对于电力系统稳定运行至关重要,可以有效提高电网调度效率,降低弃光率,促进光伏发电的推广应用。
近年来,随着机器学习技术的发展,各种光伏发电预测模型被提出。其中,深度学习模型由于其强大的特征提取能力,在光伏发电预测领域取得了显著进展。然而,传统的深度学习模型往往忽略了时间序列数据的复杂依赖关系和不同时间尺度下的特征信息,导致预测精度有限。
为了克服上述问题,本文提出了一种基于VMD-TCN-BiGRU-MATT的混合模型,用于光伏发电预测。该模型将VMD、TCN、BiGRU和MATT这四种技术有机结合,充分提取时间序列的特征信息,提高预测精度。
2. 模型结构
本文提出的VMD-TCN-BiGRU-MATT模型结构如图1所示。
该模型主要由以下四个部分组成:
2.1 变分模态分解(VMD)
VMD是一种非平稳信号分解方法,可以将原始时间序列分解成多个具有不同频率和振幅的模态分量,以提取不同时间尺度下的特征信息。
2.2 时间卷积神经网络(TCN)
TCN是一种专门用于处理时间序列数据的卷积神经网络,它利用多个卷积层来学习时间序列的复杂依赖关系。TCN的优势在于可以有效地提取时间序列的长期依赖关系。
2.3 双向门控循环神经网络(BiGRU)
BiGRU是一种循环神经网络,可以同时捕捉时间序列的前后文信息。BiGRU的优势在于可以有效地学习时间序列的上下文信息,提高模型的预测精度。
2.4 多头注意力机制(MATT)
MATT是一种注意力机制,可以对不同特征进行加权融合,以提升模型的预测精度。MATT的优势在于可以有效地提取时间序列的重点信息,提高模型的泛化能力。
3. 模型训练
模型训练采用Adam优化器,并使用均方误差损失函数进行优化。具体训练步骤如下:
-
将原始光伏功率时间序列输入到VMD模块中进行分解,得到多个模态分量。
-
将每个模态分量输入到TCN模块中进行特征提取。
-
将TCN的输出输入到BiGRU模块中进行前后文信息提取。
-
将BiGRU的输出输入到MATT模块中进行加权融合。
-
使用均方误差损失函数计算模型的预测误差,并使用Adam优化器更新模型参数。
-
重复步骤2-5,直到模型收敛。
4. 实验结果
本文使用真实光伏功率数据对模型进行训练和测试。实验结果表明,VMD-TCN-BiGRU-MATT模型在光伏发电预测方面取得了良好的效果,其预测精度明显优于其他基准模型。
5. 结论
本文提出了一种基于VMD-TCN-BiGRU-MATT的混合模型,用于光伏发电预测。该模型利用VMD、TCN、BiGRU和MATT这四种技术的有机结合,有效地提取了时间序列的特征信息,提高了模型的预测精度。实验结果表明,该模型具有较好的预测性能,为光伏发电预测提供了一种新的方法。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类