【BP时序预测】基于混沌博弈优化算法CGO实现负荷数据预测单输入单输出附matlab代码

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

1. 引言

电力负荷是指电力系统在特定时间段内消耗的总功率,是电力系统运行和控制的重要参数。准确的负荷预测是电力系统运行和控制的重要环节,可以有效提高系统效率、降低运行成本并保障电力供应安全。随着电力系统的复杂性和规模不断扩大,传统预测方法的精度和泛化能力逐渐难以满足实际需求,因此开发更有效的负荷预测方法成为电力系统研究的热点领域。

目前,电力负荷预测方法主要包括传统统计方法、机器学习方法和混合方法。传统统计方法主要基于历史数据和统计规律,例如自回归移动平均模型 (ARMA) 和指数平滑模型等,但这类方法难以处理非线性因素和复杂数据特征,预测精度相对较低。机器学习方法近年来得到了广泛应用,例如支持向量机 (SVM)、神经网络 (NN) 和深度学习等,这些方法具有较强的非线性拟合能力和数据学习能力,但模型结构复杂,参数调优困难,容易出现过拟合现象。混合方法将传统统计方法与机器学习方法结合,利用各自的优势,例如将ARMA模型与神经网络相结合,提高预测精度,但也存在参数调优复杂、模型可解释性差等问题。

2. 相关工作

近年来,学者们针对电力负荷预测开展了大量研究,取得了较多成果。例如,文献[1]提出了一种基于支持向量机 (SVM) 的电力负荷预测方法,该方法利用SVM的非线性拟合能力,有效提高了预测精度。文献[2]提出了一种基于神经网络 (NN) 的电力负荷预测方法,该方法利用NN的学习能力,对复杂数据特征进行有效建模,提高了预测精度。文献[3]提出了一种基于混合模型的电力负荷预测方法,该方法将ARMA模型与神经网络相结合,提高了预测精度和模型稳定性。

然而,现有的电力负荷预测方法仍然存在一些不足,例如:

  • 模型参数调优困难: 机器学习模型的预测精度高度依赖于模型参数的设置,而参数调优需要大量的经验和试错,效率低下。
  • 泛化能力不足: 许多预测模型在训练数据集上表现良好,但在测试数据集上的泛化能力较差,难以满足实际应用需求。
  • 模型可解释性差: 一些机器学习模型的预测结果难以解释,难以理解模型内部的运行机制,不利于模型的改进和应用。

3. 混沌博弈优化算法CGO

为了解决上述问题,本文提出一种基于混沌博弈优化算法 (CGO) 的单输入单输出电力负荷预测模型。CGO算法是一种新型的智能优化算法,它将混沌理论与博弈论相结合,具有全局搜索能力强、收敛速度快、不易陷入局部最优等优点。

CGO算法的基本原理如下:

  1. 混沌映射: CGO算法利用混沌映射产生初始种群,以提高种群多样性,避免陷入局部最优。常见的混沌映射包括Logistic映射、Tent映射和Sine映射等。
  2. 博弈策略: CGO算法将种群中的个体视为博弈参与者,根据个体适应度值进行策略选择,以引导种群向最优解方向进化。
  3. 适应度函数: CGO算法利用目标函数作为适应度函数,评估个体优劣,并根据适应度值进行策略选择。
  4. 进化规则: CGO算法根据博弈策略和适应度函数进行种群进化,不断更新个体参数,直到满足收敛条件。

4. CGO-BP预测模型

本文将CGO算法应用于BP神经网络的权值和阈值优化,构建CGO-BP预测模型。该模型的具体步骤如下:

  1. 数据预处理: 对电力负荷数据进行预处理,包括数据清洗、数据归一化等,以提高数据质量,避免异常数据对模型训练的影响。
  2. 模型构建: 构建单输入单输出的BP神经网络,并设定网络结构和激活函数等参数。
  3. CGO优化: 使用CGO算法对BP神经网络的权值和阈值进行优化,以提高模型的预测精度和泛化能力。
  4. 模型训练: 使用预处理后的电力负荷数据训练CGO-BP模型,得到最优权值和阈值。
  5. 模型测试: 使用测试数据集评估CGO-BP模型的预测精度,并与其他预测模型进行比较分析。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
  • 16
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
根据提供的引用内容,混沌博弈优化算法是一种基于混沌理论和博弈论的优化算法。虽然提供的引用中给出了MATLAB代码,但是我们同样可以使用Python实现算法。以下是一个简的Python实现示例: ```python import numpy as np # 定义目标函数 def obj_func(x): return x[0]**2 + x[1]**2 # 定义混沌映射函数 def chaos_map(x0, a=6): return a * x0 * (1 - x0) # 定义混沌博弈优化算法 def CGO(obj_func, dim=2, max_iter=100, pop_size=50, a=6): # 初始化种群 pop = np.random.rand(pop_size, dim) # 初始化个体最优解和全局最优解 p_best = pop.copy() g_best = p_best[obj_func(p_best).argmin()].copy() # 迭代寻优 for i in range(max_iter): # 计算混沌映射值 x0 = chaos_map(pop[:, 0], a=a) # 计算新的种群 pop_new = np.zeros_like(pop) for j in range(dim): # 计算混沌映射值 x0 = chaos_map(x0, a=a) # 计算新的种群 pop_new[:, j] = (1 - x0) * pop[:, j] + x0 * g_best[j] # 更新个体最优解和全局最优解 p_best_mask = obj_func(pop_new) < obj_func(p_best) p_best[p_best_mask] = pop_new[p_best_mask] g_best_mask = obj_func(p_best) < obj_func(g_best) g_best = p_best[g_best_mask][0].copy() return g_best, obj_func(g_best) # 测试 if __name__ == '__main__': g_best, obj_val = CGO(obj_func) print('最优解:', g_best) print('最优目标函数值:', obj_val) ``` 该示例中,我们首先定义了目标函数`obj_func`,然后定义了混沌映射函数`chaos_map`,最后定义了混沌博弈优化算法`CGO`。在`CGO`函数中,我们首先初始化种群,然后迭代寻优,每次迭代中都会计算混沌映射值,并根据混沌映射值计算新的种群。在更新个体最优解和全局最优解时,我们使用了布尔掩码来筛选出更优的解。最后,我们在`if __name__ == '__main__'`中测试了该算法,并输出了最优解和最优目标函数值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值