✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
一、引言
随着科技的发展,负荷数据的预测在能源、电力等领域的应用越来越广泛。准确的负荷预测可以帮助企业合理安排生产计划,降低运营成本,提高经济效益。传统的负荷预测方法往往存在计算复杂度高、预测精度低等问题。因此,研究一种高效、准确的负荷预测方法具有重要的实际意义。
二、蜣螂优化算法简介
蜣螂优化算法(Dung Beetle Optimization, DBO)是一种基于蜣螂觅食行为的启发式优化算法。蜣螂在寻找食物时,会根据食物的气味强度和距离进行搜索,从而找到最优的食物来源。DBO算法借鉴了这一行为,通过模拟蜣螂的觅食过程,实现对目标函数的优化求解。
三、基于DBO的负荷数据预测方法
1. 数据预处理
在进行负荷数据预测之前,首先需要对原始数据进行预处理,包括数据清洗、归一化等操作,以消除数据中的噪声和异常值,提高预测的准确性。
2. 构建目标函数
根据负荷数据的特点,可以构建一个单输入单输出的目标函数,用于描述负荷数据之间的关系。目标函数可以是线性回归模型、支持向量机模型等。
3. 蜣螂优化算法参数设置
为了实现高效的负荷数据预测,需要对DBO算法的参数进行合理设置,包括蜣螂数量、气味强度衰减系数、距离权重等。
4. 利用DBO算法求解目标函数
将预处理后的负荷数据作为DBO算法的输入,通过模拟蜣螂的觅食过程,不断更新蜣螂的位置和气味强度,最终找到目标函数的最优解,从而实现负荷数据的预测。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类