✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
锂电池作为一种高能量密度、循环寿命长、环境友好型的储能器件,在便携式电子设备、电动汽车、储能系统等领域得到了广泛应用。准确预测锂电池的剩余寿命 (Remaining Useful Life, RUL) 对确保设备安全运行、优化维护策略、提高系统可靠性至关重要。
近年来,深度学习技术在时间序列预测领域取得了显著进展,特别是Transformer模型凭借其强大的并行计算能力和对长距离依赖关系的捕捉能力,在自然语言处理和机器翻译等领域取得了突破性的成果。同时,双向长短期记忆网络 (BiLSTM) 能够有效地提取时间序列数据中的双向特征,并具有较强的非线性建模能力。
本文提出一种基于Transformer-BiLSTM的锂电池寿命预测模型,利用Transformer捕捉电池循环过程中多尺度特征的交互关系,并结合BiLSTM提取时间序列数据中的双向特征,最终实现对锂电池剩余寿命的精准预测。
模型架构
本模型采用了一种融合Transformer和BiLSTM的混合网络架构,具体结构如下:
-
数据预处理: 对原始电池循环数据进行预处理,包括数据清洗、特征工程、数据归一化等。
-
Transformer编码器: 将预处理后的数据输入Transformer编码器,其由多个编码层组成,每个编码层包含一个多头注意力机制和一个前馈神经网络。多头注意力机制能够捕捉不同特征之间的交互关系,而前馈神经网络则对特征进行非线性变换,从而提取更深层次的特征信息。
-
BiLSTM解码器: Transformer编码器的输出作为BiLSTM解码器的输入,BiLSTM能够有效地学习时间序列数据的双向特征,并利用其强大的非线性建模能力对未来的电池状态进行预测。
-
输出层: BiLSTM解码器的输出经过一个全连接层,最终输出锂电池剩余寿命的预测值。
模型训练
模型训练采用Adam优化器和均方误差损失函数,通过最小化损失函数来优化模型参数。训练过程中,使用循环交叉验证来评估模型的泛化能力。
实验结果
本模型在公开的锂电池数据集上进行了验证,实验结果表明:
-
相比于传统的LSTM、GRU模型,Transformer-BiLSTM模型在锂电池寿命预测方面取得了更高的预测精度。
-
该模型能够有效地捕捉电池循环过程中的多尺度特征和时间依赖关系,从而提高预测的准确性。
结论
本文提出了一种基于Transformer-BiLSTM的锂电池寿命预测模型,该模型融合了Transformer和BiLSTM的优势,能够有效地提取电池循环过程中的多尺度特征和双向特征,并实现对锂电池剩余寿命的精准预测。该模型在实际应用中具有重要价值,可以用于提高电池管理系统的可靠性、优化维护策略、延长电池使用寿命。
⛳️ 运行结果
📣 部分代码
%% 数据分析
num_size = 0.8; % 训练集占数据集比例
outdim = 2; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
🔗 参考文献
[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].
[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类