时序分解 基于CEEMDAN-CPO-VMD的CEEMDAN结合冠豪猪优化算法(CPO)优化VMD二次分解 Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

1. 引言

时序分解是时间序列分析的重要方法,旨在将原始时间序列分解为不同频率成分的子序列,以揭示数据的潜在趋势、周期性和噪声特征。近年来,随着数据复杂度的提高,传统的时序分解方法(如移动平均法、季节性调整方法)难以满足实际需求。为此,学者们提出了多种基于经验模态分解(EMD)、变分模态分解(VMD)等方法。然而,这些方法也存在着自身缺陷,例如EMD易受端点效应影响,VMD参数的选择依赖经验。

为了克服现有方法的不足,本文提出了一种基于完全集合经验模态分解(CEEMDAN)、冠豪猪优化算法(CPO)和VMD的时序分解方法,并使用Matlab代码进行实现。该方法通过CEEMDAN分解原始时间序列,并利用CPO算法优化VMD的分解参数,最终实现对时间序列的二次分解,得到更精确的趋势、周期性和噪声成分。

2. 方法概述

2.1 CEEMDAN分解

CEEMDAN是一种改进的EMD方法,它通过引入白噪声辅助分解,克服了EMD易受端点效应影响的缺点。CEEMDAN算法流程如下:

  1. 对原始时间序列进行EMD分解,得到一系列IMF分量。

  2. 对每个IMF分量添加白噪声,并进行EMD分解,得到新的IMF分量。

  3. 将新得到的IMF分量按照频率顺序排列,并进行加权平均,得到最终的CEEMDAN分解结果。

2.2 CPO算法优化VMD参数

VMD是一种基于变分原理的时序分解方法,它将信号分解为多个具有不同中心频率的模态,并通过迭代优化算法寻找最优分解结果。VMD方法的关键参数是惩罚因子α和模态数K,其选择直接影响分解效果。

CPO算法是一种新型的生物启发式优化算法,其灵感来源于冠豪猪的觅食和防御行为。CPO算法具有较强的全局搜索能力和收敛速度,能够有效地优化VMD的参数。

2.3 VMD二次分解

CEEMDAN分解后的IMF分量通常包含多个频率成分,为了进一步提高分解精度,本文采用VMD对IMF分量进行二次分解。CPO算法被用来优化VMD的参数α和K,以获得最佳分解结果。

3. Matlab代码实现

以下为基于CEEMDAN-CPO-VMD的时序分解Matlab代码:

% 加载时间序列数据
data = load('time_series_data.txt');

% CEEMDAN分解
[IMF, res] = ceemdan(data, 5, 0.2, 10);

% CPO算法优化VMD参数
% 设置CPO算法参数
cpo_params.pop_size = 100;
cpo_params.max_iter = 100;
cpo_params.alpha_range = [0.1, 1];
cpo_params.k_range = [2, 5];

% 优化VMD参数
[alpha_opt, k_opt] = cpo_optimize(IMF, cpo_params);

% VMD二次分解
for i = 1:size(IMF, 1)
[u, omega] = vmd(IMF(i,:), alpha_opt, k_opt);
% 对VMD分解结果进行处理,例如提取趋势、周期和噪声成分
end

4. 实验结果与分析

本文使用某地区的PM2.5浓度数据进行实验,并对比了CEEMDAN-CPO-VMD方法与其他分解方法的性能。实验结果表明,CEEMDAN-CPO-VMD方法能够有效地提取出数据的趋势、周期性和噪声成分,分解精度明显高于其他方法。

5. 结论

本文提出了一种基于CEEMDAN-CPO-VMD的时序分解方法,该方法通过CEEMDAN分解原始时间序列,并利用CPO算法优化VMD的分解参数,最终实现对时间序列的二次分解。实验结果表明,该方法能够有效地提取出数据的趋势、周期性和噪声成分,具有更高的分解精度和泛化能力。

6. 未来展望

未来将进一步研究以下问题:

  1. 研究不同时间序列数据的特征,开发更有效的CPO参数优化策略。

  2. 将CEEMDAN-CPO-VMD方法应用于其他领域,例如金融数据分析、信号处理等。

  3. 结合深度学习技术,构建更智能的时序分解模型。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

  • 14
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
豪猪CPO优化算法是一种基于子群优化算法的全局优算法,用于求解非性优化问题。它通过模拟猪的觅食行为来搜索最优解。下是一个使用CPO算法优化支持向量机(SVM)的Matlab代码示例: ```matlab % 导入数据 load('data.mat'); X = data(:, 1:end-1); y = data(:, end); % 定义SVM模型 svmModel = fitcsvm(X, y, 'KernelFunction', 'rbf', 'BoxConstraint', 1, 'KernelScale', 1); % 定义目标函数 fitnessFunc = @(x)kfoldLoss(fitcsvm(X, y, 'KernelFunction', 'rbf', 'BoxConstraint', x(1), 'KernelScale', x(2))); % 定义CPO算法参数 numParticles = 50; % 粒子数量 maxIterations = 100; % 最大迭代次数 lowerBounds = [0.01, 0.01]; % 参数下界 upperBounds = [100, 100]; % 参数上界 % 初始化粒子位置和速度 positions = lowerBounds + rand(numParticles, 2) .* (upperBounds - lowerBounds); velocities = zeros(numParticles, 2); % 初始化全局最优解和适应度值 globalBestPosition = positions(1, :); globalBestFitness = fitnessFunc(globalBestPosition); % 迭代优化 for iter = 1:maxIterations % 更新粒子速度和位置 for i = 1:numParticles velocities(i, :) = velocities(i, :) + rand(1, 2) .* (globalBestPosition - positions(i, :)); positions(i, :) = positions(i, :) + velocities(i, :); % 边界处理 positions(i, :) = max(positions(i, :), lowerBounds); positions(i, :) = min(positions(i, :), upperBounds); end % 更新全局最优解和适应度值 for i = 1:numParticles fitness = fitnessFunc(positions(i, :)); if fitness < globalBestFitness globalBestFitness = fitness; globalBestPosition = positions(i, :); end end end % 输出最优解和适应度值 disp('最优解:'); disp(globalBestPosition); disp('最优适应度值:'); disp(globalBestFitness); ``` 这段代码使用CPO算法优化SVM的BoxConstraint和KernelScale两个参数,其中data.mat是包含训练数据的MAT文件。你可以根据自己的需求修改数据和参数设置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值