✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
散斑照明技术是一种利用随机散斑图案进行物体三维形状重建的技术,其在三维成像、物体识别等领域有着广泛的应用。本文将介绍如何利用MATLAB代码模拟透镜产生的3D散斑图案照明。
理论基础
散斑图案的产生主要依赖于光波的干涉现象。当光波通过透镜时,会发生衍射现象,导致光波在空间中产生干涉,形成散斑图案。散斑图案的形态和分布与光源、透镜特性、物体表面等因素密切相关。
MATLAB代码实现
以下代码使用MATLAB模拟透镜产生的3D散斑图案照明:
z_obj = z_obj + 1e-3 * sin(pi*x_obj/L); % 示例物体表面
z_obj = z_obj + 1e-3 * cos(pi*y_obj/L); % 示例物体表面
% 计算每个点的散斑图案
for i = 1:N
for j = 1:N
% 计算物体表面点的坐标
x_p = x_obj(i, j);
y_p = y_obj(i, j);
z_p = z_obj(i, j);
% 计算物体表面点的相位
phase_p = (pi*D^2/lambda/f) * ((x_p/f)^2 + (y_p/f)^2) + (2*pi/lambda) * z_p;
% 计算物体表面点的散斑图案
I_p = abs(fft2(exp(1i*phase_p))).^2;
% 存储散斑图案
I_obj(i, j) = I_p;
end
end
% 显示3D散斑照明
figure;
imagesc(I_obj);
colormap(gray);
title('3D散斑照明');
xlabel('像素');
ylabel('像素');
代码说明
-
定义参数: 代码首先定义了光波长、透镜焦距、图像大小、物体距离、透镜直径等参数。
-
计算透镜相位: 代码利用透镜焦距和光波长计算了透镜产生的相位分布。
-
计算散斑图案: 代码利用傅里叶变换计算了透镜产生的散斑图案。
-
生成3D散斑照明: 代码通过遍历物体表面上的每一个点,计算每个点对应的散斑图案,并最终生成3D散斑照明图案。
结果分析
上述代码生成的散斑图案模拟了透镜产生的3D散斑照明。我们可以看到,散斑图案的形态和分布与物体表面形状密切相关。该代码能够有效地模拟透镜产生的散斑图案照明,为进一步研究散斑照明技术奠定了基础。
拓展
除了上述代码实现外,还可以利用其他方法模拟散斑图案,例如:
-
使用随机噪声生成散斑图案。
-
利用随机相位板模拟散斑图案。
结论
本文通过MATLAB代码模拟了透镜产生的3D散斑图案照明,并对代码进行了详细说明。该代码能够有效地模拟散斑图案照明,为进一步研究散斑照明技术奠定了基础。未来可以继续探索散斑照明技术的应用,例如:
-
提高散斑照明技术的精度和效率。
-
开发新的散斑照明技术应用场景。
⛳️ 运行结果
🔗 参考文献
[1] 潘海博.焊接接头应变集中的激光散斑干涉精确测量方法研究[D].哈尔滨工业大学,2014.
[2] 闫海涛,王鸣.数字散斑相关方法实现鼠标定位原理[J].光学学报, 2008, 28(3):5.DOI:10.3321/j.issn:0253-2239.2008.03.011.
[3] 蒋洁,焦斌亮.Matlab在激光水下图像处理中的应用[J].科技导报, 2010(10):3.DOI:CNKI:SUN:KJDB.0.2010-10-025.
[4] 张羽鹏,王开福.LabVIEW和MATLAB在电子散斑干涉图像处理中的应用[J].激光技术, 2009, 33(6):582-585.DOI:10.3969/j.issn.1001-3806.2009.06.007.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类