✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
数字信号调制技术在现代通信系统中扮演着至关重要的角色,它将数字信息转换为适合在信道中传输的模拟信号。其中,双边带调幅(Double Sideband Amplitude Modulation, DSB-AM)作为一种经典的调制方式,尽管在频谱效率方面存在不足,但其原理简单、实现容易,至今仍广泛应用于一些特定场合。本文将深入探讨DSB-AM调制与解调的原理、实现方法以及其应用场景,并分析其优缺点。
一、 DSB-AM调制原理
DSB-AM调制的基本原理是利用载波信号的幅度来承载数字信息。假设待调制的数字基带信号
二、DSB-AM解调原理
三、DSB-AM调制的数字实现
在数字信号处理技术的支持下,DSB-AM调制和解调可以通过数字信号处理器(DSP)或专用集成电路(ASIC)来实现。调制过程可以利用离散傅里叶变换(DFT)或快速傅里叶变换(FFT)进行频谱搬移,或者直接在时域进行乘法运算。解调过程则可以通过逆DFT/FFT或与本地载波相乘,再进行低通滤波来完成。 数字实现具有精度高、稳定性好、灵活可控等优势,可以更好地适应不同的应用场景。
四、DSB-AM的应用
尽管频谱效率较低,DSB-AM仍然在一些特定场合得到应用,例如:
-
简单的模拟通信系统: 在一些对成本和复杂度要求较高的系统中,DSB-AM的简单性和易于实现的特性使其成为一种经济的选择。
-
某些特殊的调制方案: DSB-AM可以作为其他更高级调制技术的组成部分,例如,某些类型的频率调制(FM)和相位调制(PM)系统就可能用到DSB-AM的原理。
-
教学和实验用途: DSB-AM的原理简单易懂,非常适合作为教学和实验的入门级调制技术。
五、DSB-AM的优缺点
优点:
-
实现简单,电路结构相对简单。
-
解调相对容易,只需要简单的相干解调器。
缺点:
-
频谱效率低,浪费信道带宽。
-
需要精确的载波同步,否则解调会产生严重的失真。
-
易受噪声影响,信噪比性能较差。
六、结论
双边带调幅(DSB-AM)调制是一种经典的模拟调制技术,其简单易实现的特性使其在某些特定场合仍有应用价值。然而,其频谱效率低和对载波同步要求高的缺点限制了其在现代高性能通信系统中的应用。随着数字信号处理技术的不断发展,DSB-AM的数字实现技术也日益成熟,这为其在特定应用领域的推广提供了新的可能性。 未来的研究方向可能集中在改进DSB-AM的性能,例如通过结合其他技术来提高其频谱效率和抗噪声能力。
⛳️ 运行结果
🔗 参考文献
[1]张洁,王赋攀.双边带幅度调制及其MATLAB仿真[J].科技经济市场, 2006(9):2.DOI:10.3969/j.issn.1009-3788.2006.09.045.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇