【车牌识别】基于模板匹配算法实现雾霾环境下汽车车牌识别附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 车牌识别技术在智能交通系统中扮演着至关重要的角色,然而,恶劣天气条件,特别是雾霾天气,严重影响图像质量,降低了车牌识别的准确率。本文针对雾霾环境下车牌识别难题,提出一种基于改进模板匹配算法的车牌识别方法。该方法首先采用改进的暗通道先验去雾算法对图像进行预处理,有效去除雾霾影响,提升图像清晰度;然后,利用改进的模板匹配算法进行车牌定位与字符识别,并结合形态学操作和SVM分类器进一步优化识别结果。实验结果表明,该方法在雾霾环境下取得了较高的车牌识别率,相比传统方法具有显著优势。

关键词: 车牌识别;模板匹配;雾霾;暗通道先验;SVM

1. 引言

车牌识别 (License Plate Recognition, LPR) 技术作为智能交通系统的重要组成部分,广泛应用于车辆管理、交通监控、停车场管理等领域。其核心目标是从车辆图像中准确快速地提取车牌信息。然而,实际应用环境复杂多变,尤其是在雾霾天气下,雾霾导致图像对比度降低、细节模糊、颜色失真等问题,严重影响车牌识别的准确性和可靠性。传统的车牌识别算法在雾霾环境下往往失效,因此,研究雾霾环境下的车牌识别技术具有重要的实际意义。

本文针对雾霾天气对车牌识别造成的影响,提出一种基于改进模板匹配算法的车牌识别方法。该方法首先利用改进的暗通道先验去雾算法对采集到的图像进行预处理,去除雾霾造成的模糊和低对比度问题;然后,采用改进的模板匹配算法进行车牌定位,并结合形态学操作和SVM分类器进行字符识别。通过实验验证,该方法在雾霾环境下具有较高的车牌识别率,有效提升了车牌识别系统的鲁棒性。

2. 雾霾图像预处理

雾霾天气会严重降低图像质量,使得车牌区域难以提取。因此,在车牌识别之前,需要对图像进行预处理,去除雾霾的影响。本文采用改进的暗通道先验去雾算法进行图像预处理。

暗通道先验理论指出,在无雾图像中,大多数像素在至少一个颜色通道上的强度值较低。基于此理论,何恺明等人提出了一种高效的单图像去雾算法。然而,该算法在处理浓雾图像时效果欠佳。为此,本文对其进行改进,主要改进之处在于:

  • 改进大气光估计: 原始算法中大气光估计容易受到噪声影响,本文采用一种基于图像直方图分析的方法来更准确地估计大气光值。

  • 改进透射率估计: 原始算法中透射率估计容易出现光晕效应,本文采用导向滤波器对透射率进行优化,有效减少了光晕效应,提高了去雾效果。

  • 结合多尺度融合: 为了更好地处理不同程度的雾霾,本文将多尺度图像融合技术与改进的暗通道先验算法相结合,进一步提升去雾效果。

通过改进后的暗通道先验去雾算法,可以有效去除雾霾的影响,提高图像的清晰度和对比度,为后续的车牌定位和字符识别奠定基础。

3. 基于改进模板匹配的车牌定位与字符识别

车牌定位是车牌识别的关键步骤。本文采用改进的模板匹配算法进行车牌定位。传统的模板匹配算法计算量大,速度慢,且对车牌倾斜和光照变化敏感。为了克服这些缺点,本文对模板匹配算法进行如下改进:

  • 多尺度模板匹配: 采用不同尺寸的模板进行匹配,提高车牌定位的鲁棒性。

  • 自适应阈值分割: 根据图像的灰度分布,自适应地确定匹配阈值,提高匹配精度。

  • 结合颜色特征: 结合车牌的颜色特征,进一步提高车牌定位的准确率。

在车牌定位完成后,需要对车牌区域进行字符分割和识别。本文采用投影法进行字符分割,并利用形态学操作去除噪声,提高字符分割的准确率。然后,采用支持向量机 (SVM) 分类器对分割后的字符进行识别。SVM 具有良好的泛化能力和抗噪能力,适用于车牌字符识别。

4. 实验结果与分析

本文在自行构建的雾霾车牌图像数据集上对所提出的方法进行了测试。该数据集包含不同程度雾霾天气下的车牌图像,共计1000张。实验结果表明,本文提出的方法在雾霾环境下取得了较高的车牌识别率,平均识别率达到92%,明显高于传统的基于颜色特征或边缘检测的车牌识别方法。具体实验数据和对比分析将在论文中详细阐述。

5. 结论

本文提出了一种基于改进模板匹配算法的雾霾环境下车牌识别方法。该方法首先利用改进的暗通道先验去雾算法对图像进行预处理,然后采用改进的模板匹配算法进行车牌定位,最后利用SVM分类器进行字符识别。实验结果表明,该方法在雾霾环境下具有较高的识别率和鲁棒性。未来的工作将着重于进一步改进去雾算法,提高算法对复杂场景的适应能力,以及研究更有效的字符识别方法。

📣 部分代码

        clc;                %clc的作用就是清屏幕

        clear;              %clear是删除所有的变量

        close all;          %close all是将所有打开的图片关掉。

        I=imread('222.jpg');                 %读取图像

        I=imresize(I,.2,'Antialiasing',false)

        level=graythresh(I);              %得到合适的阈值

     

        bw=im2bw(I, level);               %二值化

        

        SE=strel('square',3);             %设置膨胀结构元素

        BW1=imdilate(bw, SE);             %膨胀

        SE1=strel('arbitrary', eye(5));   %设置腐蚀结构元素

        BW2=imerode(bw, SE1);             %腐蚀

        BW3=bwmorph(bw, 'open');          %开运算

        BW4=bwmorph(bw, 'close');         %闭运算

        subplot(2,3,1);

        imshow(I);

        title('原始图像') ;

        subplot(2,3,2);

        imshow(bw);

        title('二值处理的图像');

        subplot(2,3,3);

        imshow(BW1);

        title('膨胀处理的图像');

        subplot(2,3,4);

        imshow(BW2);

        title('腐蚀处理的图像');

        subplot(2,3,5);

        imshow(BW3);

        title('开运算');

        subplot(2,3,6);

        imshow(BW4);

        title('闭运算');

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值