【信道估计】基于自适应滤波LMS、RLS、NLMS实现 OFDM调制信道估计附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

OFDM (Orthogonal Frequency Division Multiplexing) 作为一种多载波调制技术,因其高频谱效率和抗多径衰落能力而广泛应用于现代无线通信系统。然而,OFDM 系统的性能严重依赖于精确的信道估计。由于无线信道的时变性以及多径效应,准确估计信道特性至关重要。本文将深入探讨基于自适应滤波算法 LMS (Least Mean Square)、RLS (Recursive Least Square) 和 NLMS (Normalized Least Mean Square) 实现 OFDM 调制信道估计的方法,分析其原理、性能特点及适用场景。

一、 OFDM 系统模型与信道估计的必要性

OFDM 系统将宽带信道划分为多个正交的窄带子载波,在每个子载波上进行独立的调制和解调。这种方法有效地将频率选择性衰落转化为平坦衰落,提高了系统的抗多径能力。然而,多径传播导致每个子载波经历不同的衰落,这需要在接收端进行精确的信道估计,以补偿信道带来的失真,从而恢复原始信号。信道估计的准确性直接影响 OFDM 系统的误码率 (BER) 和信噪比 (SNR) 性能。

一个典型的 OFDM 系统模型包括:发送端 OFDM 调制器,无线信道,接收端 OFDM 解调器。发送端首先将数据映射到各个子载波上,进行逆快速傅里叶变换 (IFFT) 后,加上循环前缀 (CP) 以消除码间干扰 (ISI)。经过无线信道传输后,接收端首先去除 CP,进行快速傅里叶变换 (FFT),然后进行信道估计和均衡,最终恢复出原始数据。信道估计正是位于接收端 FFT 之后,均衡之前的重要环节。

二、 基于自适应滤波的信道估计算法

自适应滤波算法能够根据输入信号实时调整滤波器系数,适应信道变化,是实现信道估计的有效方法。LMS、RLS 和 NLMS 是三种常用的自适应滤波算法,它们在收敛速度、计算复杂度和稳态误差等方面各有优劣。

(一) LMS 算法

LMS 算法是一种简单的梯度下降算法,其更新公式为:

w(n+1) = w(n) + μe(n)x(n)

其中,w(n) 为 n 时刻的滤波器权值向量,μ 为步长因子,e(n) 为误差信号,x(n) 为输入信号向量。LMS 算法具有计算简单、实现方便的优点,但收敛速度较慢,稳态误差较大。在信道变化缓慢的情况下,LMS 算法可以提供令人满意的估计结果。

(二) RLS 算法

RLS 算法是一种基于最小二乘法的自适应滤波算法,其更新公式相对复杂,涉及矩阵求逆运算。RLS 算法具有快速收敛速度和较小的稳态误差,但计算复杂度较高。在信道快速变化的环境下,RLS 算法能够快速跟踪信道变化,提供更准确的信道估计。

(三) NLMS 算法

NLMS 算法是对 LMS 算法的改进,通过对输入信号进行归一化处理,提高了算法的收敛速度和稳态性能。其更新公式为:

w(n+1) = w(n) + μe(n)x(n) / (ε + ||x(n)||²)

其中,ε 为一个小的正则化参数,用于避免分母为零。NLMS 算法兼顾了 LMS 算法的简单性和 RLS 算法的快速收敛性,在很多应用中取得了良好的平衡。

三、 基于导频信号的信道估计

在 OFDM 系统中,通常采用导频信号进行信道估计。导频信号是已知信号,均匀分布在各个子载波上。接收端根据已知导频信号和接收到的导频信号,利用自适应滤波算法估计信道的频率响应。具体的实现步骤如下:

  1. 导频信号的插入与接收: 发送端在 OFDM 符号中插入已知的导频信号。接收端接收包含导频信号的 OFDM 符号。

  2. 接收信号处理: 接收端进行 FFT 变换,得到各个子载波上的接收信号。

  3. 信道估计: 利用已知导频信号和接收到的导频信号,采用 LMS、RLS 或 NLMS 算法估计每个子载波上的信道频率响应。

  4. 信道响应插值: 由于导频信号并非分布在所有子载波上,需要对估计出的信道频率响应进行插值,以得到所有子载波上的信道响应。常用的插值方法包括线性插值和多项式插值等。

  5. 均衡: 利用估计出的信道响应进行信道均衡,补偿信道带来的失真。

四、 算法性能比较与应用场景

LMS 算法计算简单,功耗低,适合于对实时性要求高,计算资源有限的场景,例如一些低功耗的物联网设备。RLS 算法收敛速度快,精度高,适合于信道快速变化的场景,例如高速移动通信环境。NLMS 算法则介于两者之间,具有较好的性能和鲁棒性,应用范围广泛。选择哪种算法取决于具体的应用需求和系统资源限制。

五、 结论

本文详细介绍了基于自适应滤波算法 LMS、RLS 和 NLMS 实现 OFDM 调制信道估计的方法。这三种算法各有优劣,在不同的应用场景下具有不同的适用性。选择合适的算法需要根据系统的具体要求,权衡计算复杂度、收敛速度和估计精度等因素。未来研究可以关注更加高效的信道估计算法,例如基于深度学习的信道估计方法,以进一步提升 OFDM 系统的性能。 此外,对不同算法在不同信道条件下的性能进行更深入的仿真和分析,对于实际应用具有重要的指导意义。

📣 部分代码

      

             %% RLS

            [xi_rls, h_rls] = RLS(d, u, delta, lambda, L);

            H_est = fft(h_rls,N);

            H_est=reshape(H_est,N,1);

            % using OFDM, we convert a wideband channel into a set of N parallel

            % narrowband channels. As a result, no complex equalization is required

            Y_data= fft(y(M+2*CP_len+1:end),N)*(1/sqrt(N));

            % cancel the effect of the channel divide with the conjugate and the abs^2

            % symbol-by-symbol decision for each information symbol (no complex

            % equalization as mentioned)

            r= Y_data.*conj(H_est)./(abs(H_est).^2);

            num_bits_wrong_RLS(j) = num_bits_wrong_RLS(j)+ demodulate(r, qam, N, data_bitsIn);

        end

        

        BER_LS(j)=num_bits_wrong_LS(j)/(log2(qam)*N*loops);

        BER_LMS(j)=num_bits_wrong_LMS(j)/(log2(qam)*N*loops);

        BER_RLS(j)=num_bits_wrong_RLS(j)/(log2(qam)*N*loops);

        BER_NLMS(j)=num_bits_wrong_NLMS(j)/(log2(qam)*N*loops);

end

end

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值