【机械臂】基于强化学习的六轴机械臂避障策略研究附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本文提出了一种基于强化学习的六轴机械臂避障策略。该策略优先规划机械臂末端执行器的避障路径,然后利用计算得到的末端路径规划机械臂的姿态。对于末端路径上的某些点,如果机械臂在安全距离限制内无法避开障碍物,该策略会将这些点记录为新的障碍物,并重新规划机械臂末端执行器的避障路径。该过程通过辅助学习策略加速,并循环迭代直到计算出可行的路径。本文提出的方法已应用于六轴机械臂,仿真结果表明该方法能够有效地规划机械臂的最佳路径和姿态。

1. 引言

在工业自动化领域,六轴机械臂被广泛应用于各种任务,例如装配、焊接、喷涂和搬运等。然而,实际工作环境中往往存在各种障碍物,如何使机械臂在复杂环境中安全、高效地完成任务,是机器人研究领域的一个重要课题。传统的避障方法,如人工势场法、A*算法等,虽然在一定程度上可以解决避障问题,但往往存在局部最优解、计算复杂度高、难以适应动态环境等问题。

近年来,强化学习(Reinforcement Learning,RL)作为一种无需人工干预、通过与环境交互学习的机器学习方法,在机器人控制领域展现出巨大的潜力。强化学习算法能够使机械臂自主学习避障策略,并能够在复杂和动态的环境中找到最佳路径。

本文针对六轴机械臂的避障问题,提出了一种基于强化学习的避障策略。该策略的核心思想是优先规划机械臂末端执行器的避障路径,然后利用计算得到的末端路径规划机械臂的姿态。这种方法将复杂的六轴机械臂避障问题分解为两个相对简单的子问题,从而降低了问题的复杂度。

2. 相关研究

目前,已经有大量的研究将强化学习应用于机器人避障领域。例如,一些研究者使用深度强化学习算法(如Deep Q-Network,DQN)训练机器人自主避开障碍物。另一些研究者则使用强化学习优化机械臂的运动轨迹,使其在避开障碍物的同时,还能满足特定的运动约束。

然而,现有的基于强化学习的机械臂避障方法仍然存在一些挑战。例如,训练过程通常需要大量的样本数据,训练时间较长;算法的鲁棒性有待提高,在复杂环境中容易出现问题;对于高维度的机械臂控制问题,强化学习算法的性能往往会下降。

3. 基于强化学习的六轴机械臂避障策略

本文提出的基于强化学习的六轴机械臂避障策略,主要包含以下几个步骤:

3.1 末端路径规划

首先,使用强化学习算法规划机械臂末端执行器的避障路径。具体来说,我们将机械臂末端的位置作为状态空间,机械臂末端的运动方向作为动作空间,机械臂与障碍物之间的距离作为奖励函数。通过强化学习算法,训练出一个策略,该策略能够根据当前状态选择合适的动作,使机械臂末端能够安全地到达目标位置。

3.2 机械臂姿态规划

在得到机械臂末端执行器的避障路径后,我们需要进一步规划机械臂的姿态。对于末端路径上的每一个点,我们使用逆运动学算法计算出机械臂的关节角度。为了保证机械臂在运动过程中不会与障碍物发生碰撞,我们需要对关节角度进行约束。

3.3 障碍物更新

在姿态规划过程中,可能会出现以下情况:对于末端路径上的某些点,机械臂在安全距离限制内无法避开障碍物。在这种情况下,我们将这些点记录为新的障碍物,并重新规划机械臂末端执行器的避障路径。

3.4 辅助学习策略

为了加速强化学习的训练过程,我们引入了辅助学习策略。具体来说,我们首先使用传统的避障算法(如人工势场法)生成一些初始路径,然后将这些路径作为训练样本,用于初始化强化学习算法。这样可以使强化学习算法更快地收敛到最优策略。

3.5 循环迭代

以上步骤循环迭代,直到计算出可行的路径。也就是说,每次迭代都会更新障碍物信息,并重新规划末端路径和机械臂姿态。通过多次迭代,可以使机械臂最终找到一条安全、高效的避障路径。

5. 结论与展望

本文提出了一种基于强化学习的六轴机械臂避障策略。该策略优先规划机械臂末端执行器的避障路径,然后利用计算得到的末端路径规划机械臂的姿态。该方法能够有效地解决六轴机械臂的避障问题,并在复杂环境中找到最佳路径。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值