基于扭转的串联弹性致动器的基准扭矩控制策略附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

1. 串联弹性致动器概述

串联弹性致动器(SEA)是一种在机器人关节等领域广泛应用的驱动装置,它通过在电机和负载之间串联一个弹性元件,如弹簧,来实现力或扭矩的控制。这种结构具有缓冲冲击、提高系统柔顺性等优点,能够使机器人在与环境交互时更加安全和灵活。基于扭转的 SEA 是其中一种常见的类型,它利用弹性元件的扭转变形来测量和控制扭矩。

2. 基准扭矩控制策略原理

  • 扭矩测量

    :通过测量弹性元件的扭转角度或变形量来间接获取输出扭矩信息。通常在弹性元件上安装角度传感器或应变片等测量装置,将扭转角度或应变转换为电信号,经过信号处理后得到扭矩测量值。

  • 控制目标

    :基准扭矩控制策略的目标是使致动器输出的扭矩能够精确跟踪给定的扭矩指令。无论是在静态还是动态情况下,都要尽可能减小实际输出扭矩与目标扭矩之间的误差。

  • 反馈控制原理

    :基于反馈控制理论,将扭矩测量值与扭矩指令进行比较,得到扭矩误差。控制器根据这个误差来调整电机的输入,例如通过改变电机的电流或电压,从而改变电机的输出力矩,进而使弹性元件产生相应的扭转,以达到减小扭矩误差的目的。

3. 常见的控制算法

  • 比例 - 积分 - 微分(PID)控制

    :PID 控制器是一种经典的反馈控制器。比例环节根据扭矩误差的大小成比例地调节控制量,能够快速响应误差,但可能存在稳态误差;积分环节用于消除稳态误差,通过对扭矩误差的积分来逐渐调整控制量;微分环节则根据扭矩误差的变化率来提前预测误差的变化趋势,从而改善系统的动态响应性能。通过合理调整 PID 控制器的三个参数(比例系数、积分系数和微分系数),可以使系统在不同的工作条件下都能实现较好的扭矩控制效果。

  • 模型预测控制(MPC)

    :MPC 是一种基于模型的先进控制策略。它首先建立 SEA 的动态模型,然后根据当前的系统状态和未来的扭矩指令,通过求解一个优化问题来预测未来一段时间内的控制量。在每个控制周期中,只将优化得到的第一个控制量应用于系统,然后在下一个周期重新进行优化计算。MPC 能够考虑系统的约束条件,如电机的最大扭矩、弹性元件的变形限制等,并且可以对未来的扭矩变化进行提前规划,因此在复杂的动态工况下具有较好的控制性能。

  • 自适应控制

    :自适应控制算法能够根据系统的运行状态自动调整控制器的参数。对于基于扭转的 SEA,由于其弹性元件的特性可能会随着温度、使用时间等因素发生变化,自适应控制可以实时估计这些变化,并相应地调整控制参数,以保证扭矩控制的精度和稳定性。例如,模型参考自适应控制(MRAC)通过将实际系统的输出与参考模型的输出进行比较,根据误差来调整控制器的参数,使实际系统的性能尽可能接近参考模型。

4. 控制策略的实现与优化

  • 硬件实现

    :在实际应用中,需要选择合适的电机、弹性元件和传感器来构建基于扭转的 SEA。电机的选择要考虑到扭矩输出能力、转速范围和响应速度等因素;弹性元件的刚度、扭转角度范围和疲劳寿命等特性对扭矩控制性能有重要影响;传感器的精度、分辨率和响应时间也会直接影响扭矩测量的准确性和控制效果。此外,还需要设计合适的驱动电路和信号处理电路,以实现对电机的控制和传感器信号的采集与处理。

  • 软件设计

    :控制算法通常在微控制器或数字信号处理器(DSP)等硬件平台上通过软件编程来实现。软件设计包括控制算法的代码实现、数据采集与处理程序、通信接口程序等。为了提高控制性能和实时性,需要对软件进行优化,例如采用高效的算法实现、合理的内存管理和中断处理机制等。

  • 优化措施

    :为了进一步提高基准扭矩控制策略的性能,可以采取一些优化措施。例如,对弹性元件进行预紧处理,以减小其在初始阶段的非线性特性;采用先进的传感器融合技术,将多种传感器的信息进行融合,提高扭矩测量的精度和可靠性;对控制算法进行优化,如采用改进的 PID 参数整定方法、优化 MPC 的目标函数和约束条件等。

5. 应用领域与发展趋势

  • 应用领域

    :基于扭转的串联弹性致动器的基准扭矩控制策略在机器人领域有广泛的应用,如工业机器人的力控制、服务机器人的人机交互、康复机器人的辅助治疗等。在这些应用中,精确的扭矩控制能够使机器人更加灵活、安全地与环境和人类进行交互。此外,它还可以应用于一些需要高精度力或扭矩控制的设备中,如精密加工设备、医疗器械等。

  • 发展趋势

    :随着机器人技术和智能制造的不断发展,对基于扭转的 SEA 的基准扭矩控制策略提出了更高的要求。未来的发展趋势包括提高控制精度和响应速度,以适应更加复杂和精细的任务需求;增强系统的鲁棒性和适应性,能够在不同的工作环境和工况下稳定运行;结合人工智能和机器学习技术,如深度学习算法,实现更加智能的扭矩控制策略,例如通过学习不同任务下的最佳控制参数,自动调整控制策略以优化性能。同时,随着新材料和新工艺的不断涌现,开发具有更好性能的弹性元件和传感器,也将进一步推动该技术的发展。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值