【非侵入式负载监测】低采样率电动汽车充电的无训练非侵入式负载监测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

非侵入式负载监测 (Non-Intrusive Load Monitoring, NILM) 是一种仅利用单个监控点(例如智能电表)获取的整体电力数据,来识别和分解家庭或建筑中各个电器设备运行状态的技术。与传统的侵入式负载监测方法相比,NILM 不需要在每个电器设备上安装传感器,具有安装成本低、部署便捷、用户隐私保护性好等优点,因此在智能电网、能源管理、需求侧响应等领域具有广阔的应用前景。近年来,随着电动汽车 (Electric Vehicle, EV) 的日益普及,电动汽车充电已成为家庭用电的重要组成部分。然而,电动汽车充电模式多样、功率变化范围大、持续时间长等特点,使得传统 NILM 方法在处理电动汽车充电负载时面临诸多挑战。本文将探讨针对低采样率电动汽车充电的无训练非侵入式负载监测方法,旨在解决现有方法在实际应用中遇到的问题,并提高电动汽车充电负载识别的准确性和可靠性。

NILM 的基本原理与挑战

NILM 的基本原理是通过分析整体电力数据中的特征变化,例如电流、电压、功率等,来推断电器设备的开启、关闭、工作状态等信息。常见的 NILM 方法主要分为两类:基于事件检测的方法和基于状态空间分解的方法。基于事件检测的方法主要通过检测整体电力数据中出现的显著变化,例如功率跳变、谐波变化等,来识别电器设备的开启和关闭事件。这些事件与特定的电器设备相关联,从而实现负载识别。基于状态空间分解的方法则将整体电力数据分解为各个电器设备的状态空间,并通过优化算法,例如神经网络、支持向量机等,来推断每个电器设备的状态。

尽管 NILM 技术近年来取得了显著进展,但在实际应用中仍然面临诸多挑战。首先,低采样率数据限制了 NILM 算法的性能。大多数家庭使用智能电表采集电力数据,而智能电表的采样率通常较低,例如每分钟或每隔几分钟采集一次数据。低采样率数据丢失了大量的瞬时信息,使得 NILM 算法难以准确识别快速变化的电器设备,例如电动汽车充电。其次,电器设备的种类繁多、功率范围广泛,导致 NILM 算法难以泛化到不同的应用场景。不同的电器设备具有不同的功率特征,即使是同一类型的电器设备,其功率消耗也可能因品牌、型号、使用习惯等因素而异。此外,电器设备的运行状态也可能受到环境因素的影响,例如温度、湿度等。这些因素都会影响 NILM 算法的性能。第三,传统的 NILM 方法通常需要大量的训练数据才能获得良好的性能。然而,收集和标注大量的训练数据需要耗费大量的人力和物力。此外,训练数据的隐私性也是一个重要的问题。用户可能不愿意分享他们的电力数据,担心隐私泄露。

低采样率电动汽车充电负载识别的难点

电动汽车充电负载的识别是 NILM 的一个重要应用领域。然而,电动汽车充电的特殊性使得其识别面临诸多挑战。

  • **充电模式多样性:**电动汽车充电模式多样,包括慢充、快充、直流充电等。不同的充电模式具有不同的功率特性,例如慢充功率较低且稳定,而快充功率较高且变化剧烈。这种多样性使得 NILM 算法难以建立统一的模型来识别不同的充电模式。

  • **功率变化范围大:**电动汽车充电的功率变化范围很大,从几百瓦到几十千瓦不等。这种大的功率变化范围使得 NILM 算法难以准确区分电动汽车充电与其他电器设备的运行状态。

  • **充电持续时间长:**电动汽车充电的持续时间通常较长,从几小时到十几小时不等。这种长的持续时间使得 NILM 算法难以实时监测电动汽车的充电状态。

  • **与背景负载的叠加:**电动汽车充电通常与家庭的其他电器设备同时运行,导致电动汽车充电负载与背景负载叠加在一起。这种叠加使得 NILM 算法难以准确分离电动汽车充电负载。

无训练 NILM 方法的优势与适用性

为了克服上述挑战,无训练 NILM 方法受到了越来越多的关注。无训练 NILM 方法是指不需要事先收集和标注训练数据,而是直接利用整体电力数据来识别电器设备的方法。无训练 NILM 方法具有以下优点:

  • **无需训练数据:**无训练 NILM 方法不需要收集和标注大量的训练数据,降低了数据采集的成本和难度。

  • **适用性强:**无训练 NILM 方法不需要针对特定的电器设备进行训练,因此具有更强的适用性,可以应用于不同的应用场景。

  • **隐私保护:**无训练 NILM 方法不需要用户分享他们的电力数据,保护了用户的隐私。

无训练 NILM 方法特别适用于电动汽车充电负载识别,因为电动汽车充电模式相对固定,可以通过分析电力数据的特征变化来识别。例如,可以利用功率跳变检测法来识别电动汽车的开启和关闭事件,利用谐波分析法来识别电动汽车的充电模式,利用模式识别法来识别电动汽车的充电状态。

基于特征提取与规则推理的无训练 NILM 方法

针对低采样率电动汽车充电,一种有效的无训练 NILM 方法是基于特征提取与规则推理的方法。该方法首先从低采样率的整体电力数据中提取关键特征,例如功率跳变幅度、功率变化频率、谐波含量等。然后,基于这些特征,设计一系列规则来推断电动汽车的充电状态。

  • **特征提取:**对于低采样率的电力数据,直接进行功率跳变检测可能不够准确。可以采用滑动平均滤波等方法对电力数据进行平滑处理,以降低噪声的影响。此外,还可以利用差分运算来增强功率跳变的特征。谐波特征可以通过快速傅里叶变换 (Fast Fourier Transform, FFT) 等方法提取。需要注意的是,低采样率数据可能会导致频率混叠,因此需要选择合适的采样频率和FFT参数。

  • **规则推理:**基于提取的特征,可以设计一系列规则来推断电动汽车的充电状态。例如,如果功率跳变幅度超过某个阈值,且谐波含量符合电动汽车充电的特征,则可以推断电动汽车正在充电。此外,还可以结合时间信息来提高识别的准确性。例如,电动汽车通常在夜间或凌晨充电,因此可以设置时间限制来排除其他电器设备的干扰。

进一步的研究方向

虽然基于特征提取与规则推理的无训练 NILM 方法具有一定的优势,但在实际应用中仍然存在一些问题,例如规则设计的复杂性、特征选择的困难性等。未来可以从以下几个方面进行进一步的研究:

  • **智能规则学习:**可以利用机器学习算法,例如决策树、支持向量机等,自动学习规则,从而降低规则设计的复杂性。

  • **特征融合:**可以将不同的特征进行融合,例如功率特征、谐波特征、时间特征等,以提高识别的准确性。

  • **自适应阈值:**可以采用自适应阈值的方法,根据不同的应用场景动态调整阈值,从而提高识别的鲁棒性。

  • **与深度学习结合:**可以将深度学习方法应用于特征提取和规则推理,例如利用卷积神经网络 (Convolutional Neural Network, CNN) 自动提取特征,利用循环神经网络 (Recurrent Neural Network, RNN) 建模时间序列数据。

结论

非侵入式负载监测技术在智能电网和能源管理领域具有重要的应用价值。针对低采样率电动汽车充电,无训练 NILM 方法具有无需训练数据、适用性强、隐私保护等优点。基于特征提取与规则推理的无训练 NILM 方法是一种有效的解决方案。未来的研究方向可以集中在智能规则学习、特征融合、自适应阈值以及与深度学习结合等方面,以提高电动汽车充电负载识别的准确性和可靠性,为智能电网和能源管理提供更加有效的工具和技术支持。 随着电动汽车的普及,高效准确的电动汽车充电负载识别技术将发挥越来越重要的作用。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值