✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
电力系统作为现代社会赖以生存的重要基础设施,其安全、可靠和高效运行至关重要。然而,电力系统内部复杂的电磁瞬变(Electromagnetic Transients, EMT)现象,如开关操作、雷击、故障等,会对电力设备的稳定运行产生严重影响,甚至导致设备损坏和系统崩溃。因此,精确而高效地仿真电力系统的EMT现象,对于电力系统的设计、运行和维护具有至关重要的意义。
近年来,随着计算机技术的快速发展,电磁瞬变仿真技术也日趋成熟。基于时域的电磁瞬变仿真,如直接法(Direct Method)和隐式梯形积分法(Implicit Trapezoidal Integration Method),虽然在精度上能够满足要求,但在大规模电力系统仿真中,其计算量巨大,耗时较长。针对这一问题,基于频率域的仿真方法,尤其是矢量拟合(Vector Fitting, VF)法和分频拟合(Frequency-dependent Fitting, FpF)法,凭借其在频率域对系统传递函数进行精确拟合的优势,以及在时域实现快速卷积的特点,逐渐成为电力系统电磁瞬变仿真的重要手段。
本文旨在深入探讨基于矢量拟合(VF)法和分频拟合(FpF)法在电力系统电磁瞬变仿真中的应用,从原理、方法、优势和局限性等方面进行详细阐述,并展望其未来的发展趋势。
一、矢量拟合(VF)法的原理和应用
矢量拟合(VF)法是一种用于近似一个频率响应的强大工具。在电力系统电磁瞬变仿真中,VF法主要用于将电力系统元件的频率响应(例如导纳或阻抗)表示为有理函数的形式。这种有理函数形式可以方便地转换到时域,从而能够高效地进行时域仿真。
VF法的核心思想是通过迭代的方法来寻找一组极点、留数和常数项,使得拟合得到的有理函数在给定的频率范围内尽可能地逼近原始的频率响应。其基本步骤如下:
- 选取初始极点:
选择一组初始的极点,这些极点通常随机分布在复平面上。
- 求解线性方程组:
根据选取的极点,建立并求解一个线性方程组,以获得留数和常数项。这个线性方程组的目标是最小化拟合误差。
- 更新极点:
通过求解广义特征值问题,更新极点的位置。这个步骤是VF法的关键,能够使极点逐渐靠近真实的极点。
- 重复迭代:
重复步骤2和步骤3,直到拟合误差满足要求或者达到最大迭代次数。
VF法的优势在于其能够有效地处理具有复杂频率响应的电力系统元件,例如变压器、电缆和输电线路。此外,VF法还具有良好的收敛性和稳定性。然而,VF法也存在一些局限性,例如:
- 参数选取的影响:
初始极点的选取、频率采样点的选择以及容差的设置都会影响拟合结果。不合适的参数选取可能会导致拟合结果不准确或者收敛速度缓慢。
- 高阶拟合的复杂性:
为了获得更高的拟合精度,可能需要使用更高阶的有理函数。然而,高阶拟合会增加计算的复杂性,并可能导致数值不稳定。
尽管存在一些局限性,VF法仍然是电力系统电磁瞬变仿真中一种非常有用的工具。通过合理的参数选取和算法改进,VF法可以有效地提高仿真的精度和效率。
二、分频拟合(FpF)法的原理和应用
分频拟合(FpF)法是一种基于分频段进行拟合的频率域仿真方法。其基本思想是将整个频率范围划分为若干个子频段,然后在每个子频段内使用简单的有理函数进行拟合。由于每个子频段内的频率范围较窄,因此可以使用低阶的有理函数获得较高的拟合精度。
FpF法的具体步骤如下:
- 频段划分:
将整个频率范围划分为若干个子频段。频段划分的原则是使得每个子频段内的频率响应变化相对平缓。
- 子频段拟合:
在每个子频段内,使用简单的有理函数(例如二阶或三阶有理函数)对频率响应进行拟合。可以使用最小二乘法或其他优化算法来求解有理函数的系数。
- 时域仿真:
将每个子频段内的有理函数转换到时域,并使用卷积运算进行时域仿真。由于每个子频段内的有理函数阶数较低,因此可以高效地进行时域仿真。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
本主页CSDN博客涵盖以下领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类