基于优化自适应微分电导算法的最大功率点跟踪改进技术研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

太阳能作为一种清洁、可再生能源,在全球能源结构转型中扮演着日益重要的角色。光伏发电系统(Photovoltaic system, PV system)的效率直接影响着太阳能的利用率和经济效益。由于光伏电池输出特性受光照强度和温度的影响呈现非线性,最大功率点跟踪(Maximum Power Point Tracking, MPPT)技术成为提高光伏发电效率的关键技术。本文旨在探讨基于优化自适应微分电导算法的最大功率点跟踪改进技术,深入分析传统微分电导算法的局限性,并研究如何通过优化方法,提升算法的跟踪精度、响应速度以及在复杂环境下的适应能力。

一、光伏发电系统与最大功率点跟踪技术概述

光伏电池的输出特性具有显著的非线性特征。在不同的光照强度和温度条件下,其输出电压和电流会发生变化,进而影响其输出功率。存在一个特定的电压和电流组合,使得光伏电池能够输出最大的功率,这个点被称为最大功率点(Maximum Power Point, MPP)。然而,由于环境因素的不断变化,MPP的位置也会随之漂移。因此,MPPT技术的目标就是实时跟踪并调整光伏系统的运行状态,使其始终工作在或接近MPP,从而最大化光伏发电系统的效率。

现有的MPPT算法种类繁多,包括扰动观察法(Perturb and Observe, P&O)、增量电导法(Incremental Conductance, INC)、恒定电压法(Constant Voltage, CV)等。其中,增量电导法由于其更高的精度和抗干扰能力,在实际应用中得到了广泛的关注。增量电导法的基本原理是根据光伏电池的电导增量和瞬时电导之间的关系来判断MPP的位置。当电导增量等于瞬时电导时,系统处于MPP;当电导增量大于瞬时电导时,系统运行在MPP的左侧;当电导增量小于瞬时电导时,系统运行在MPP的右侧。通过不断调整系统的运行状态,使其电导增量趋近于瞬时电导,从而实现MPP跟踪。

二、传统微分电导算法的局限性分析

传统的微分电导算法在实际应用中也存在一些局限性,主要体现在以下几个方面:

  • 固定步长影响跟踪精度和响应速度:

     传统的微分电导算法通常采用固定的电压或电流步长来调整系统的运行状态。当步长较大时,算法的响应速度较快,但跟踪精度较低,容易造成MPP周围的震荡,降低系统的效率。当步长较小时,算法的跟踪精度较高,但响应速度较慢,无法快速适应环境变化,尤其是在光照强度突变的情况下。

  • 抗干扰能力不足:

     在实际运行过程中,光伏发电系统会受到各种干扰,如电网电压波动、负载变化等。这些干扰会影响电压和电流的测量精度,导致微分电导算法误判MPP的位置,从而影响跟踪效果。

  • 难以应对复杂环境:

     在部分遮蔽或多峰情况下,光伏电池的输出特性曲线会出现多个局部最大值点。传统的微分电导算法容易陷入局部最大值点,无法找到真正的全局最大值点。

三、优化自适应微分电导算法的改进技术研究

为了克服传统微分电导算法的局限性,提高MPPT的性能,本文重点研究基于优化自适应微分电导算法的改进技术,主要从以下几个方面进行探讨:

  • 自适应步长调整策略:

     针对传统微分电导算法固定步长带来的问题,引入自适应步长调整策略。该策略可以根据光伏系统的运行状态,动态调整电压或电流步长。当系统远离MPP时,采用较大的步长,提高响应速度;当系统接近MPP时,采用较小的步长,提高跟踪精度,减小震荡。常用的自适应步长调整方法包括基于模糊逻辑的步长调整、基于神经网络的步长调整以及基于比例积分微分(PID)控制的步长调整等。

  • 滤波算法的应用:

     为了提高算法的抗干扰能力,引入滤波算法对电压和电流信号进行处理,以减小噪声的影响。常用的滤波算法包括移动平均滤波、卡尔曼滤波以及小波变换等。通过滤波处理,可以有效提高电压和电流信号的信噪比,降低误判MPP的概率。

  • 全局寻优算法的融合:

     为了应对部分遮蔽或多峰情况,将全局寻优算法与微分电导算法融合。全局寻优算法可以快速定位全局最大值点的区域,然后通过微分电导算法进行精确定位。常用的全局寻优算法包括粒子群优化(Particle Swarm Optimization, PSO)、遗传算法(Genetic Algorithm, GA)以及差分进化算法(Differential Evolution, DE)等。

  • 控制策略的优化:

     对微分电导算法的控制策略进行优化,例如引入死区控制,避免在MPP附近频繁调整系统的运行状态,从而降低能量损耗。同时,可以根据不同的运行工况,切换不同的控制策略,以提高算法的适应性。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值